AN ANALOGUE OF MAHLER’S TRANSFERENCE THEOREM FOR MULTIPLICATIVE DIOPHANTINE APPROXIMATION

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Khintchine’s and Dyson’s transference theorems can be very easily deduced from Mahler’s transference theorem. In the multiplicative setting an obstacle appears, which does not allow deducing the multiplicative transference theorem immediately from Mahler’s theorem. Some extra considerations are required, for instance, induction by the dimension. In this paper we propose an analogue of Mahler’s theorem which implies the multiplicative transference theorem immediately.

作者简介

O. German

Moscow Lomonosov State University; Moscow Center of Fundamental and Applied Mathematics

编辑信件的主要联系方式.
Email: german.oleg@gmail.com
Russian Federation, Moscow; Russian Federation, Moscow

参考

  1. Dyson F.J. On simultaneous Diophantine approximations // Proc. London Math. Soc. 1947. V. 49. № 2. P. 409–420.
  2. German O.N. Transference inequalities for multiplicative Diophantine exponents // Труды МИРАН. 2011. Т. 275. С. 227–239.
  3. Касселс Дж.В.С. Введение в теорию диофантовых приближений. М.: ИИЛ, 1961.
  4. Шмидт В. Диофантовы приближения. М.: “Мир”, 1983.
  5. German O.N. On Diophantine exponents and Khintchine’s transference principle // Moscow J. Comb. Number Theory. 2012. V. 2. № 2. P. 22–51.
  6. Герман О.Н., Евдокимов К.Г. Усиление теоремы переноса Малера // Изв. РАН. Сер. матем. 2015. Т. 79. № 1. С. 63–76.
  7. Mahler K. Ein Übertragungsprinzip für lineare Ungleichungen // Čas. Pešt. Mat. Fys. 1939. V. 68. P. 85–92.
  8. Mahler K. On compound convex bodies, I. Proc. London Math. Soc. 1955. V. 5. № 3. P. 358–379.
  9. Mahler K. On compound convex bodies. II. Proc. London Math. Soc. 1955. V. 5. № 3. P. 380–384.

补充文件

附件文件
动作
1. JATS XML

版权所有 © О.Н. Герман, 2023