Operator estimates for problems in domains with singular curving of boundary
- Autores: Borisov D.I.1, Suleimanov R.R.2
-
Afiliações:
- Institute of Mathematics, Ufa Federal Research Center, RAS
- Ufa University of Science and Technologies
- Edição: Volume 515, Nº 1 (2024)
- Páginas: 11-17
- Seção: MATHEMATICS
- URL: https://gynecology.orscience.ru/2686-9543/article/view/647913
- DOI: https://doi.org/10.31857/S2686954324010025
- EDN: https://elibrary.ru/ZUFAST
- ID: 647913
Citar
Resumo
We consider a system of second order semi-linear elliptic equations in a multidimensional domain, the boundary of which is arbitrarily curved and is contained in a narrow layer along the unperturbed boundary. On the curve boundary we impose the Dirichlet or Neumann condition. In the case of the Neumann condition, on the structure of curving we additionally impose rather natural and weak conditions. Under such conditions we show that the homogenized problem is for the same system of equations in the unperturbed problem with the boundary condition of the same kind. The main result are - and L-operator estimates.
Palavras-chave
Sobre autores
D. Borisov
Institute of Mathematics, Ufa Federal Research Center, RAS
Autor responsável pela correspondência
Email: borisovdi@yandex.ru
Rússia, Ufa
R. Suleimanov
Ufa University of Science and Technologies
Email: radimsul@mail.ru
Rússia, Ufa
Bibliografia
- Sanchez-Palencia E.. Non-homogeneous media and vibration theory. New York: Springer, 1980. 409 pp.
- Олейник О.А., Иосифьян Г.А., Шамаев А.С. Математические задачи теории сильно неоднородных упругих сред. М.: Изд-во МГУ, 1990. 312 с.
- Беляев А.Г., Михеев А.Г., Шамаев А.С. // Ж. вычисл. матем. матем. физ. 1992. Т. 32. № 8. С. 1258–1272.
- Чечкин Г.А., Акимова Е.А., Назаров С.А. // Доклады РАН. 2001. Т. 380. № 4. С. 439–442.
- Грушин В.В., Доброхотов С.Ю. // Матем. заметки. 2014. Т. 95. № 3. С. 359–375.
- Козлов В.А., Назаров С.А. // Алг. ан. 2010. Т. 22. № 6. С. 127–184.
- Пастухова С.Е. // Дифф. уравн. 2001. Т. 37. № 9. С. 1216–1222.
- Amirat Y., Bodart O., Chechkin G.A., Piatnitski A.L. // Stoch. Process. Appl. 2011. Т. 121. № 1. С. 1–23.
- Arrieta J., Brushi S. // Discr. Cont. Dyn. Syst. Ser. B. 2010. Vol. 14. No. 2. P. 327–351.
- Chechkin G.A., Friedman A., Piatnitski A.L. // J. Math. Anal. Appl. 1999. Vol. 231. No. 1. P. 213–234.
- Jäger W., Mikelić A. // Comm. Math. Phys. 2003. Vol. 232. No. 3. P. 429–455.
- Myong-Hwan Ri // Preprint: arXiv: 1311.0977. 2013.
- Neuss N., Neuss-Radu M., Mikelić A. // Applic. Anal. 2006. Vol. 85. No. 5. P. 479–502.
- Borisov D., Cardone G., Faella L., Perugia C. // J. Diff. Equat. 2013. Vol. 255. No. 12. P. 4378–4402.
- Борисов Д.И. // Пробл. матем. ан. 2022. Вып. 116. С. 69–84.
Arquivos suplementares
