Сублоренцева геометрия на распределении Мартине

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследуются две задачи сублоренцевой геометрии на распределении Мартине. Для первой множество достижимости имеет нетривиальное пересечение с плоскостью Мартине, а для второй нет. Описаны множества достижимости, оптимальные траектории, сублоренцевы расстояния и сферы.

Об авторах

Ю. Л. Сачков

Институт программных систем имени А. К. Айламазяна РАН

Автор, ответственный за переписку.
Email: yusachkov@gmail.com
Россия

Список литературы

  1. Montgomery R. A tour of subriemannnian geometries, their geodesics and applications // Amer. Math. Soc. 2002.
  2. Agrachev A., Barilari D., Boscain U. A Comprehensive Introduction to sub-Riemannian Geometry from Hamiltonian viewpoint // Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge Univ. Press, 2019.
  3. Grochowski M. Geodesics in the sub-Lorentzian geometry // Bull. Polish. Acad. Sci. Math. 2002. V. 50.
  4. Grochowski M. Normal forms of germs of contact sub-Lorentzian structures on . Differentiability of the sub-Lorentzian distance // J. Dynam. Control Systems. 2003. V. 9. № 4.
  5. Grochowski M. Properties of reachable sets in the sub-Lorentzian geometry // J. Geom. Phys. 2009. V. 57. № 9. P. 885–900.
  6. Grochowski M. Reachable sets for contact sub-Lorentzian metrics on . Application to control affine systems with the scalar input // J. Math. Sci. (N.Y.) 2011. V. 177. № 3. P. 383–394.
  7. Grochowski M. On the Heisenberg sub-Lorentzian metric on // Geometric Singularity Theory. Banach Center Publications, Institute of Mathematics. Warsawa: Polish Academy of Sciences, 2004. V. 65.
  8. Grochowski M. Reachable sets for the Heisenberg sub-Lorentzian structure on . An estimate for the distance function // Journal of Dynamical and Control Systems. 2006. V. 12. № 2. P. 145–160.
  9. Chang D.-C., Markina I. and Vasil'ev A. Sub-Lorentzian geometry on anti-de Sitter space // J. Math. Pures Appl. 2008. V. 90. P. 82–110.
  10. Korolko A. and Markina I. Nonholonomic Lorentzian geometry on some H-type groups // J. Geom. Anal. 2009. V. 19. P. 864–889.
  11. Grong E., Vasil’ev A. Sub-Riemannian and sub-Lorentzian geometry on SU(1, 1) and on its universal cover // J. Geom. Mech. 2011. V. 3. № 2. P. 225–260.
  12. Grochowski M., Medvedev A., Warhurst B. 3-dimensional left-invariant sub-Lorentzian contact structures // Differential Geometry and its Applications. 2016. V. 49. P. 142–166.
  13. Sachkov Yu. L., Sachkova E.F. Sub-Lorentzian distance and spheres on the Heisenberg group // Journal of Dynamical and Control Systems. 2023. V. 29. P. 1129–1159.
  14. Аграчев А.А., Сачков Ю.Л. Геометрическая теория управления. Физматлит, 2005. Перевод: Agrachev A.A., Sachkov Yu.L. Control Theory from the Geometric Viewpoint. Springer, 2004.
  15. Сачков Ю.Л. Введение в геометрическую теорию управления. М.: URSS, 2021. Расширенный перевод: Sachkov Yu. Introduction to geometric control. Springer, 2022.
  16. Agrachev A., Bonnard B., Chyba M., Kupka I. Sub-Riemannian sphere in Martinet flat case // J. ESAIM: Control, Optimisation and Calculus of Variations. 1997. V. 2. P. 377–448.
  17. Сачков Ю.Л. Левоинвариантные задачи оптимального управления на группах Ли, интегрируемые в эллиптических функциях // УМН. 2023. Т. 78. № 1 (469). С. 67–166.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024