Representations of the solutions for volterra integro-differential equations in hilbert spaces

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Volterra integro-differential equations with operator coefficients in Hilbert spaces were studied. The relationship has been established between the spectra of operator functions that are the symbols of the specified integro-differential equations and the spectra of generators of semigroups. Representations of solutions for considered integro-differential equations are obtained on the basis of spectral analysis of generators of operator semigroups and corresponding operator-functions.

About the authors

N. A. Rautian

Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Author for correspondence.
Email: nadezhda.rautian@math.msu.ru
Russian Federation, Moscow; Moscow

References

  1. Kopachevsky N.D., Krein S.G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Nonself-adjoint Problems for Viscous Fluids // Operator Theory: Advances and Applications (Birkhauser Verlag, Basel/Switzerland). 2003. V. 146. 444 p.
  2. Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with memory.Theory and applications. New-York – Dordrecht – Heidelberg – London: Springer, 2012. 576 p.
  3. Георгиевский Д.В. Модели теории вязкоупругости. М.: ЛЕНАНД, 2023. 144 c.
  4. Локшин А.А., Суворова Ю.В. Математическая теория распространения волн в средах с памятью. М.: Изд-во МГУ, 1982. 152 c.
  5. Gurtin M.E., Pipkin A.C. General theory of heat conduction with finite wave speed // Arch. Rat. Mech. Anal. 1968. V. 31. P. 113–126.
  6. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М.: Мир, 1984.
  7. Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
  8. Skubachevskii A.L. Boundary-value problems for elliptic functional-differential equations and their applications // Russian Mathematical Surveys. 2016. V. 71. № 5. P. 801–906.
  9. Shamaev A.S., Shumilova V.V. Spectrum of one-dimensional natural vibrations of layered medium consisting of elastic material and viscous incompressible fluid // Moscow University Mathematics Bulletin. 2020. V. 75. № 4. P. 172–176.
  10. Rautian N.A. On the Properties of Semigroups Generated by Volterra Integro-Differential Equations with Kernels Representable by Stieltjes Integrals // Differential Equations. 2021. V. 57. № 9. P. 1231–1248.
  11. Rautian N.A. Studying Volterra Integro-Differential Equations by Methods of the Theory of Operator Semigroups // Differential Equations. 2021. V. 57. № 12. P. 1665–1684.
  12. Rautian N.A., Vlasov V.V. Spectral Analysis of the Generators for Semigroups Associated with Volterra Integro-Differential Equations // Lobachevskii Journal of Mathematics. 2023. V. 44. № 3. P. 926–935.
  13. Vlasov V.V., Rautian N.A. Application of Semigroup Theory to the Study of Volterra Integro-Differential Equations // Differential Equations. 2022. V. 58. № 4. P. 571–575.
  14. Vlasov V.V., Rautian N.A. Well-Posed Solvability of Volterra Integro-Differential Equations in Hilbert Spaces// Differential Equations. 2022. V. 58. № 10. P. 1410–1426.
  15. Крейн С.Г. Линейные дифференциальные уравнения в банаховых пространствах. М.: Наука, 1967. 464 с.
  16. Engel K.J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. New York: Springer-Verlag, 2000. 586 p.
  17. Гельфанд И.М., Виленкин Н.Я. Некоторые применения гармонического анализа. Оснащенные гильбертовы пространства. М.: Физ.-мат. лит., 1961.
  18. Маркус А.С. Введение в спектральную теорию полиномиальных операторных пучков. Кишинев: Штиница, 1986.
  19. Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве. М.: Наука, 1965.
  20. Радзиевский Г.В. Асимптотика распределения характеристических чисел оператор-функций, аналитических в угле // Математический сборник. – 1980. Т. 112. № 3. C. 396–420.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences