ON THE ZAREMBA PROBLEM FOR INHOMOGENEOUS p-LAPLACE EQUATION WITH DRIFT

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A higher integrability of the gradient of a solution to the Zaremba problem in a bounded Lipschitz domain is proved for the inhomogeneous p-Laplace equation with drift.

Sobre autores

Yu. Alkhutov

A.G. and N.G. Stoletov Vladimir State University

Email: yurij-alkhutov@yandex.ru
Vladimir, Russia

M. Surnachev

Keldysh Institute of Applied Mathematics

Email: peitsche@yandex.ru
Moscow, Russia

A. Chechkina

M.V. Lomonosov Moscow State University; Institute of Mathematics with Computing Center – Subdivision of the Ufa Federal Research Center of Russian Academy of Science

Email: chechkina@gmail.com
Moscow, Russia; Ufa, Russia

Bibliografia

  1. Боярский Б.В. Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами // Матем. сб. 1957. Т. 43(85). № 4. С. 451—503.
  2. Meyers N.G. An Lp—estimate for the gradient of solutions of second order elliptic deivergence equations // Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3-e serie. 1963. V 17. №3. P. 189-206.
  3. Алхутов Ю.А., Чечкин Г.А. Повышенная суммируемость градиента решения задачи Зарембы для уравнения Пуассона // Доклады РАН. 2021. Т. 497. № 2. С. 3-6.
  4. Alkhutov Yu.A., Chechkin G.A. The Meyer’s Estimate of Solutions to Zaremba Problem for Second-order Elliptic Equations in Divergent Form // C. R. Mecanique. 2021. V. 349. № 2. P. 299-304.
  5. Alkhutov Yu.A., Chechkin G.A., Maz’ya V.G. On the Bojarski-Meyers Estimate of a Solution to the Zaremba Problem // Arch. Rational Mech. Anal. 2022. V. 245. P. 1197-1211.
  6. Алхутов Ю.А., Чечкин Г.А. Однозначная разрешимость задачи Зарембы для линейного эллиптического уравнения второго порядка со сносом // Проблемы математического анализа. 2024. Т. 127. С. 19-28.
  7. Алиев М.Д., Алхутов Ю.А., Чечкин Г.А. О задаче Зарембы для линейного эллиптического уравнения второго пордяка со сносом в случае предельного показателя // Уфимский математический журнал. 2024. Т. 16. № 4. С. 5666.
  8. Алхутов Ю.А., Чечкин Г.А. Оценка Боярского-Мейерса решения задачи Зарембы со сносом // Математический сборник. 2025 (в печати).
  9. Мазья В.Г. Пространства С.Л. Соболева / В.Г. Мазья. Л.: Изд-во Ленингр. ун-та, 1985. 416 с.
  10. Лаптев Г.И. Условия монотонности для одного класса квазилинейных дифференциальных операторов, зависящих от параметров // Матем. заметки. 2014. Т. 96. № 3. С. 405-417.
  11. Gehring F.W. The Lp—integrability of the partial derivatives of a quasiconformal mapping // Acta Math. 1973. V. 130. P. 265-277.
  12. Скрыпник И.В. Методы исследования нелинейных эллиптических граничных задач / И.В. Скрыпник. М.: Наука. Гл. ред. физ.-мат. лит., 1990. 448 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025