ON THE ESTIMATE FOR THE SPECTRAL FUNCTION OF THE ZAREMBA PROBLEM FOR THE LAPLACIAN

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The Zaremba problem for the Laplace operator is considered. An estimate of the spectral function is found.

作者简介

A. Chechkina

Lomonosov Moscow State University; Institute of Mathematics with Computer Center of the Ufa Science Center of the Russian Academy of Sciences

Email: chechkina@gmail.com

参考

  1. Maz'ya V.G. Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Berlin: Springer-Verlag, 2011.
  2. Смолицкий Х.Л. Оценки производных фундаментальных функций // ДАН СССР. 1950. Т. 74. № 2. С. 205–208.
  3. Эйдус Д.М. Оценки модуля собственных функций // ДАН СССР. 1953. Т. 90. № 6. С. 973–974.
  4. Эйдус Д.М. Некоторые неравенства для собственных функций // ДАН СССР. 1956. Т. 107. № 6. С. 796–798.
  5. Ильин В.А., Шишмарев И.А. Равномерные в замкнутой области оценки для собственных функций эллиптического оператора и их производных // Изв. АН СССР. 1960. Т. 24. № 6. С. 883–896.
  6. Якубов В.Я. Точные оценки для нормированных в L собственных функций эллиптического оператора // Докл. РАН. 1993. Т. 331. № 3. С. 286–287.
  7. Якубов В.Я. Оценки по спектральному параметру для собственных функций эллиптических операторов // Функциональный анализ и его приложения. 1999. Т. 33. Вып. 2. С. 58–67.
  8. Чечкина А.Г. Об оценке максимума модуля собственных функций задачи Зарембы для дивергентного эллиптического уравнения второго порядка // Сириус. Математический журнал. 2025. Т. 1. № 2.
  9. Avakumović V.G. Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten // Math. Z. 1956. V. 65. P. 327–344.
  10. Hörmander L. The spectral function of an elliptic operator // Acta Math. 1968. V. 121. P. 193–218.
  11. Weyl H. Das asimptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialeinungen (mittener Anwendung auf die Theorie Hohlraumstrahlung) // Math. Ann. 1912. V. 71. P. 441–449.
  12. Algazin S.D. Numerical Study of the Zaremba Problem // Doklady Mathematics. 2021. V. 104. № 2. P. 225–228.
  13. Алхутов Ю.А., Чечкин Г.А. Повышенная суммируемость градиента решения задачи Зарембы для уравнения Пуассона // Доклады РАН. 2021. Т. 497. № 2. С. 3–6.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025