Barrier discharge conversion of gaseous olefins

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The oxidation of olefins С2С4 in a barrier discharge in the presence of water has been investigated, with the formation of oxygen-containing compounds and various hydrocarbons С1С5+ of limited and unsaturated structure being observed. The initial olefin’s molecular weight and structure have been found to exert a significant influence on the direction of the reaction. In the ethylene-propylene-butylene series, the proportion of oxygen-containing compounds increases from 28.1, 74.3 and 66.7 wt%, respectively. The oxidation of isobutene isomasalic aldehyde and acetone, with a content of 53 and 21 wt. %, respectively, primarily yields the formation of these compounds. In the case of the oxidation of butene-1 and butene-2, the predominant products are butanol-2, with a yield of up to 26 wt. %.

全文:

受限制的访问

作者简介

A. Ryabov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: a.y.ryabov@yandex.ru
俄罗斯联邦, Tomsk

S. Kudryashov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: a.y.ryabov@yandex.ru
俄罗斯联邦, Tomsk

参考

  1. Samoilovich V.G., Gibalov V.I., Kozlov K.V. // Physical Chemistry of Barrier Discharge. M: Moscow state university. 1989. 174 p.
  2. Suttikul T., Yaowapong-aree S., Sekiguchi H. et al. // Chem. Eng. Process. 2013. V. 70. P. 222–232.
  3. Tsolas N., Yetter R.A., Adamovich I.V. // Combust. Flame. 2017. V. 176. P. 462–478.
  4. Suttikul T., Tongurai C., Sekiguchi H., Chavadej S. // Plasma. Chem. Plasma Process. 2012. V. 32. P. 1169–1188.
  5. Sreethawong T., Suwannabart T., Chavadej S. // Plasma Chem. Plasma Process. 2008. V. 28. P. 629–642.
  6. Tiwari S., Caiola A., Bai X. et al. // Plasma Chem. Plasma Process. 2020. V. 40 P. 1–23.
  7. Xiong H., Zhu X., Lu S. et al. // Sci. Total Environ. 2021. V. 788. P. 147675.
  8. Lin H., Guan B., Cheng Q., Huang Z. // Energy Fuels. 2010. V. 24. P. 5418–5425.
  9. Kudryashov S.V., Ochered’ko A.N., Ryabov A.Yu., Shchyogoleva G. S. // Plasma Chem. Plasma Process. 2011. V. 31. P. 649–661.
  10. Ryabov A. Yu., Kudryashov S. V., Ochered’ko A. N., Dankovtsev G.O. // Chem. Sustain. Dev. 2021. V. 29. P. 180–184.
  11. Ryabov A.Yu., Kudryashov S.V., Ocheredko A.N. // High Energy Chemistry. 2022. V. 56. № 3. P. 245–250.
  12. Ryabov A.Yu., Kudryashov S.V. // High Energy Chemistry. 2023. V. 57. № 4. P. 327–331.
  13. Kudryashov S. Ryabov A. Shchyogoleva G. // J. Phys. D: Appl. Phys. 2016. V. 49. P. 025205.
  14. Fridman A. // Plasma Chemistry. NY: Cembridge University Press, 2012. 979 p.
  15. Janev R.K., Reiter D. // Physics of Plasmas. 2004. V. 11. P. 780.
  16. Cvetanovic R.J. // J. Phys. Chem. Ref. Data. 1987. V. 16. P, 261.
  17. Caracciolo A., Vanuzzo G., Balucani N. et al. // J. Phys. Chem. A. 2019. V. 123. P. 9934–9956.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Formation of oxygen-containing compounds (oxygenates) and hydrocarbons (●) during the oxidation of gaseous olefins with air, depending on its content in the initial mixture.

下载 (129KB)
3. 2. The group composition of the reaction products depending on the air content in the initial mixture with butane.

下载 (116KB)
4. 3. The composition and content of oxygen-containing compounds in the oxidation products of butenes at 90% of the air content in the initial mixture.

下载 (143KB)

版权所有 © Russian Academy of Sciences, 2024