Hypothetical possibility of hydrogen octaoxide formation in cavitation plasma discharge

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This study examines the characteristics of water treated by cavitation plasma electric discharge. During the discharge process, hydroxyl radicals, hydrogen atoms and oxygen atoms are produced. The cycling of water through the discharge region results in the generation of secondary products with oxidising, reducing and slightly alkaline properties. The yield of oxidising and reducing agents was measured as a function of the total energy released in the discharge. The findings indicate that during the cyclic treatment of under the influence of cavitation discharge, hydrogen peroxide (H2O8) is produced. At a dose of 240 J/10 ml, the concentration is approximately ~10–3 mol/l.

Texto integral

Acesso é fechado

Sobre autores

N. Aristova

Nizhny Tagil Technological Institute, Yeltsin Ural Federal University

Email: i.m.piskarev@gmail.com
Rússia, Nizhny Tagil

I. Ivanova

Institute of Biology and Biomedicine

Email: i.m.piskarev@gmail.com
Rússia, Nizhny Novgorod

N. Gul`ko

IPLASMA

Email: i.m.piskarev@gmail.com
Rússia, Moscow

A. Makarov

IPLASMA

Email: i.m.piskarev@gmail.com
Rússia, Moscow

I. Piskarev

Skobeltsyn Research Institute of Nuclear Physics, Moscow State University

Autor responsável pela correspondência
Email: i.m.piskarev@gmail.com
Rússia, Moscow, 119992

Bibliografia

  1. Rezaei F., Vanraes P., Nikiforov A. et al. // Materials. 2019. V. 12. P. 2751.
  2. Ihara S., Sakai T., Yoshida Y., Nishiyama H. // J. Electrostatics. 2018. V. 93. P. 110.
  3. Piskarev I.M. // IEEE Transactions on Plasma Science. 2021. V. 49. № 4. P. 1363.
  4. Levanov A.V., Sakharov D.V., Dashkova A.V. et al. // Eur. J. Inorg. Chem. 2011. P. 5144.
  5. Levanov A.V., Isaikina O.Ya. // J. Phys. Chem. 2022. V. 96. № 6. P. 843.
  6. Betul A.Y. // Word J. Adv. Res. Rev. 2021. V. 12. № 2. P. 179.
  7. Abramov V.O., Abramova A.V., Cravotto G. et al. // Ultrasonics – Sonochemistry. 2021. V. 70. 105323.
  8. Marsalek B., Marsalkova E., Odehnalova K. et al. // Water. 2020. V. 12. P. 8.
  9. Filipi A., Dobnik D., Guti'errez-Aguirre I. et al. // Env. Int. 2023. V. 182. 108285.
  10. Ihara S., Hirohata T., Kominato Y. et al. // Electrical Eng. Japan. 2014. V. 186. № 4. P. 656.
  11. Estifaee P., Su X., Yannam S.k. et al. // Sci. Rep. 2019. V. 9. Article 2326.
  12. Piskarev I.M., Ivanova I.P. // Plasma Chemistry and Plasma Processing. 2021. V. 41. P. 447.
  13. Charlot G. Les methods de la chimie analytique. in analyse quantitative menerale. Part II. Ed. Paris. France. Masson et Cie, 1961.
  14. Pikaev A.K. Modern radiation chemistry. Radiolysis of gases and liquids. M.: Nauka, 1986.
  15. Piskarev I.M., Ushkanov V.A., Aristova N.A., et al. // Biophysics. 2010. V. 55. № 1. P. 19.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The block diagram of the experiment. 1 – Flow cavitation plasma reactor, 2 – electrodes, 3 – voltage monitoring, 4 – pulse generator, 5 – flow meter, 6 – pressure gauge, 7 – supply pump, 8 – tank with treated water, 9 – spectrometer.

Baixar (84KB)
3. Fig. 2. The emission spectrum of a discharge in a cavitation cavity.

Baixar (58KB)
4. 3. Dependence of the concentration of [C] mmol/l, reducing agents (1) and oxidizing agents (2) formed in water under the action of an electric discharge in a cavitation cavity on the dose, J/10 ml.

Baixar (67KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024