Amorphous SICX:H and SICXNY:H films obtained from hexamethyldisilane vapor in inductively coupled RF discharge plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Amorphous films of hydrogenated silicon carbide SiCx:H and carbonitride SiCxNy:H have been synthesized in an RF inductively coupled plasma reactor using hexamethyldisilane vapor and additional argon and/or nitrogen gases. The deposition process was carried out at temperatures of 50–400°C and plasma powers of 100–400 W. The dependences of the growth rate, chemical composition and structure of films, light transmittance, refractive index, and optical band gap on synthesis conditions have been obtained. An in situ study of the gas phase composition was performed using optical emission spectroscopy.

Full Text

Restricted Access

About the authors

M. N. Chagin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: marina@niic.nsc.ru
Russian Federation, Novosibirsk

E. N. Ermakova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: marina@niic.nsc.ru
Russian Federation, Novosibirsk

V. R. Shayapov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: marina@niic.nsc.ru
Russian Federation, Novosibirsk

V. S. Sulyaeva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: marina@niic.nsc.ru
Russian Federation, Novosibirsk

E. A. Maksimovskii

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: marina@niic.nsc.ru
Russian Federation, Novosibirsk

I. V. Yushina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: marina@niic.nsc.ru
Russian Federation, Novosibirsk

M. L. Kosinova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: marina@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Ermakova E., Kosinova M. // J. Organomet. Chem. 2022. V. 958. P. 122183.
  2. Gilman A.B., Zinoviev A.V., Kuznetsov A.A. // High Energy Chemistry. 2022. V. 56. № 6. P. 470.
  3. Fainer N.I., Nemkova A.A. // High Energy Chemistry. 2015. V. 49. № 4. P. 308
  4. Wróbel A.M., Wickramanayaka S., Nakanishi Y., et al. // Diam. Relat. Mater. 1997. V. 6. P. 1081
  5. Wickramanayaka S., Hatanaka Y., Nakanishi Y., Wróbel A.M. // J. Electrochem. Soc. 1994. V. 141. № 10. P. 2910.
  6. Neileth S. Figueroa, J.L. Nachez, F.L. et al. // J. Ceram. Soc. Japan. 2009. V. 117. P. 558.
  7. Cho S.H., Choi D.J. // J. Ceram. Soc. Japan. 2009. V. 117. P. 558.
  8. Jun S. Lee, Su B. et al. // Curr. Appl. Phys. 2015. V. 15. P. 1342.
  9. Choi Y.S, Lee J.S., Jin S.B., Han J.G. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 315501.
  10. Shim C., Jung D. // Jpn. J. Appl. Phys. 2004. V. 43. P. 940.
  11. Klumpp A., Schaber U., Offereins H.L. et al. // Sens. Actuators A Phys., 1994. V. 41. P. 310.
  12. Ito H., Kumakura M., Suzuki T. et al. // Jpn. J. Appl. Phys. 2016. V. 55. P. 06HC01.
  13. Orlikovskiy A.A., Rudenko K.V., Averkin S.N. // High Energy Chemistry. 2006. V. 40. № 3. P. 220.
  14. Pearse R.W.B., Gaydon A.G. The Identification of Molecular Spectra. Hoboken, NY, USA: J. Wiley& Sons, 1963.
  15. Dieke G.H. The Hydrogen Molecule Wavelength Tables of Gerhard Heinrich Dieke. Ed. Crosswhite H.M., New York, NY, USA: Wiley-InterScience. 1972.
  16. NIST Atomic Spectra Database; NIST Standard Reference. Database 78, Version 5.9. Available online: https://physics.nist.gov/asd
  17. Rumyantsev Yu.M., Chagin M.N., Shayapov V.R. et al. // Glass Phys. Chem. 2018. V. 44. №. 3. P. 174.
  18. Chagin M.N., Sulyaeva V.S., Shayapov V.R. et al. // Coatings. 2022. V. 12. P. 80
  19. Tolstoy V.P., Chernyshova I.V., Skryshevsky V.A. Handbook of Infrared Spectroscopy of Ultrathin Films. Hoboken, NJ, USA: John Wiley & Sons, Inc.: 2003. 739 p.
  20. Bellamy L.J. The Infrared Spectra of Complex Molecules. London, United Kingdom: Springer, 1975. 433 p.
  21. Launer P.J.; Arkles B. Infrared analysis of organosilicon compounds: Spectra-structure correlations. In Silicon Compounds: Silanes & Silicones. Morrisville, PA, USA: Gelest, Inc. 2013.
  22. Stuart B.H. Infrared spectroscopy: fundamentals and applications. John Wiley & Sons Ltd, 2004. 224 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Emission spectra of ICP plasma (P = 400 W) of GDS+Ar(a) and GMS+Ar+N2 mixtures at F(N2)/[F(N2)+F(Ar)] = 0.5 (b).

Download (147KB)
3. Fig. 2. Dependences of the emission intensity of the CN band (a) and the Hß line (b) on the RF discharge power for mixtures of GMDS + Ar (squares), GMDS + Ar + N2 (circles), GMDS + N2 (triangles).

Download (98KB)
4. 3. Dependences of the emission intensity of the Si line (a) and the C2 band (b) on the RF discharge power for mixtures of GDS + Ar (squares), GMS + Ar + N2 (circles), GMDS + N2 (triangles).

Download (92KB)
5. 4. The dependence of the elemental composition of films on (a) the deposition temperature, (b) the plasma power, and (c) the nitrogen content in the initial gas mixture GMDS + Ar + N2.

Download (195KB)
6. Fig. 5. Evolution of IR spectra of Siox films:H when (a) the synthesis temperature and (b) the plasma power change.

Download (217KB)

Copyright (c) 2024 Russian Academy of Sciences