Barrier discharge conversion of gaseous olefins

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The oxidation of olefins С2С4 in a barrier discharge in the presence of water has been investigated, with the formation of oxygen-containing compounds and various hydrocarbons С1С5+ of limited and unsaturated structure being observed. The initial olefin’s molecular weight and structure have been found to exert a significant influence on the direction of the reaction. In the ethylene-propylene-butylene series, the proportion of oxygen-containing compounds increases from 28.1, 74.3 and 66.7 wt%, respectively. The oxidation of isobutene isomasalic aldehyde and acetone, with a content of 53 and 21 wt. %, respectively, primarily yields the formation of these compounds. In the case of the oxidation of butene-1 and butene-2, the predominant products are butanol-2, with a yield of up to 26 wt. %.

Full Text

Restricted Access

About the authors

A. Y. Ryabov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: a.y.ryabov@yandex.ru
Russian Federation, Tomsk

S. V. Kudryashov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: a.y.ryabov@yandex.ru
Russian Federation, Tomsk

References

  1. Samoilovich V.G., Gibalov V.I., Kozlov K.V. // Physical Chemistry of Barrier Discharge. M: Moscow state university. 1989. 174 p.
  2. Suttikul T., Yaowapong-aree S., Sekiguchi H. et al. // Chem. Eng. Process. 2013. V. 70. P. 222–232.
  3. Tsolas N., Yetter R.A., Adamovich I.V. // Combust. Flame. 2017. V. 176. P. 462–478.
  4. Suttikul T., Tongurai C., Sekiguchi H., Chavadej S. // Plasma. Chem. Plasma Process. 2012. V. 32. P. 1169–1188.
  5. Sreethawong T., Suwannabart T., Chavadej S. // Plasma Chem. Plasma Process. 2008. V. 28. P. 629–642.
  6. Tiwari S., Caiola A., Bai X. et al. // Plasma Chem. Plasma Process. 2020. V. 40 P. 1–23.
  7. Xiong H., Zhu X., Lu S. et al. // Sci. Total Environ. 2021. V. 788. P. 147675.
  8. Lin H., Guan B., Cheng Q., Huang Z. // Energy Fuels. 2010. V. 24. P. 5418–5425.
  9. Kudryashov S.V., Ochered’ko A.N., Ryabov A.Yu., Shchyogoleva G. S. // Plasma Chem. Plasma Process. 2011. V. 31. P. 649–661.
  10. Ryabov A. Yu., Kudryashov S. V., Ochered’ko A. N., Dankovtsev G.O. // Chem. Sustain. Dev. 2021. V. 29. P. 180–184.
  11. Ryabov A.Yu., Kudryashov S.V., Ocheredko A.N. // High Energy Chemistry. 2022. V. 56. № 3. P. 245–250.
  12. Ryabov A.Yu., Kudryashov S.V. // High Energy Chemistry. 2023. V. 57. № 4. P. 327–331.
  13. Kudryashov S. Ryabov A. Shchyogoleva G. // J. Phys. D: Appl. Phys. 2016. V. 49. P. 025205.
  14. Fridman A. // Plasma Chemistry. NY: Cembridge University Press, 2012. 979 p.
  15. Janev R.K., Reiter D. // Physics of Plasmas. 2004. V. 11. P. 780.
  16. Cvetanovic R.J. // J. Phys. Chem. Ref. Data. 1987. V. 16. P, 261.
  17. Caracciolo A., Vanuzzo G., Balucani N. et al. // J. Phys. Chem. A. 2019. V. 123. P. 9934–9956.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Formation of oxygen-containing compounds (oxygenates) and hydrocarbons (●) during the oxidation of gaseous olefins with air, depending on its content in the initial mixture.

Download (129KB)
3. 2. The group composition of the reaction products depending on the air content in the initial mixture with butane.

Download (116KB)
4. 3. The composition and content of oxygen-containing compounds in the oxidation products of butenes at 90% of the air content in the initial mixture.

Download (143KB)

Copyright (c) 2024 Russian Academy of Sciences