Effect of solvents on optical properties and dynamics of exciton states in quantum dots CdZnS/ZnS doped with Mn2+

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The dynamics of differential absorption spectra of Mn2+ : Zn0.48Cd0.52S/ZnS quantum dots (QDs) after excitation with a femtosecond (fs) pulse of 360 nm in aprotonic nonpolar cyclohexane and polar propylene carbonate solvents in comparison with the protonic polar solvent water has been studied by femtosecond laser spectroscopy method. The absorption and luminescence spectra of QDs in water revealed bands related to trapped states. The fading band related to the edge exciton of QD attenuates significantly faster in water than in aprotonic solvents, which suggests rapid electron transfer from the 1Se level to trap states in competition with electron transfer to manganese. Apparently, the competition of these processes is the reason for the decrease in the quantum yield of manganese luminescence in Mn2+ : Zn0.48Cd0.52S/ZnS when passing from aprotonic solvents to water.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Vasin

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Хат алмасуға жауапты Автор.
Email: a2vasin@yandex.ru
Ресей, Dolgoprudny; Moscow

A. Dobryakov

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Ресей, Dolgoprudny; Moscow

A. Kostrov

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Ресей, Dolgoprudny; Moscow

E. Koroznikova

Moscow Institute of Physics and Technology

Email: a2vasin@yandex.ru
Ресей, Dolgoprudny

F. Gostev

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Ресей, Dolgoprudny; Moscow

I. Shelaev

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Ресей, Dolgoprudny; Moscow

O. Antonova

N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Ресей, Moscow

S. Kochev

A.N. Nesmeyanov Institute of Organoelement Compounds of the RAS

Email: a2vasin@yandex.ru
Ресей, Moscow

V. Nadtochenko

Moscow Institute of Physics and Technology; N.N. Semenov Federal Research Center for Chemical Physics of the RAS

Email: a2vasin@yandex.ru
Ресей, Dolgoprudny; Moscow

Әдебиет тізімі

  1. Kamat P.V. // J. Phys. Chem. C. Am. Chem. Soc. 2008. V. 112. № 48. P. 18737–18753.
  2. Sun P. et al. // Chem. Eng. J. 2023. V. 458. P. 141399.
  3. Rtimi S., Kiwi J., Nadtochenko V. // Curr. Opin. Chem. Eng. 2021. V. 34. P. 100731.
  4. Martynenko I.V. et al. // J. Mater. Chem. B. Royal Soc. Chem. 2017. V. 5. № 33. P. 6701–6727.
  5. Cherepanov D. et al. // Nanomaterials. MDPI. 2021. V. 11. № 11. P. 3007.
  6. Nadtochenko V. et al. // Chem. Phys. Lett. North-Holland. 2020. V. 743. P. 137160.
  7. Pandey A., Sarma D. // Z. Anorg. Allg. Chem. 2016. V. 642. № 23. P. 1331–1339.
  8. Wang C.W., Orrison C., Son D.H. // Bull. Korean Chem. Soc. 2022. V. 43. № 4. P. 492–500.
  9. Yu W.W. et al. // Biochem. Biophys. Res. Commun. 2006. V. 348. № 3. P. 781–786.
  10. Spirin M.G., Brichkin S.B., Razumov V.F. // High Energy Chem. 2015. V. 49. № 6. P. 426–432.
  11. Cui S.C. et al. // J. Phys. Chem. C. Am. Chem. Soc. 2010. V. 114. № 2. P. 1217–1225.
  12. Gostev F.E. et al. // High Energy Chem. 2018. V. 52. № 6. P. 508–509.
  13. Gostev F.E. et al. // High Energy Chem. 2018. V. 52. № 6. P. 492–497.
  14. du Fossé I. et al. // J. Phys. Chem. C. Am. Chem. Soc. 2021. V. 125. № 43. P. 23968–23975.
  15. Moon H. et al. // Adv. Mater. 2019. V. 31. № 34. P. 1804294.
  16. Nadtochenko V. et al. // J. Photochem. Photobiol. A Chem. 2022. V. 429. P. 113946.
  17. Archer D.G., Wang P. // J. Phys. Chem. Ref. Data. 1990. V. 19. № 2. P. 371–411.
  18. Simeral L., Amey R.L. // J. Phys. Chem. Am. Chem. Soc. 1970. V. 74. № 7. P. 1443–1446.
  19. Barthel J., Feuerlein F. // J. Sol. Chem. 1984. V. 13. № 6. P. 393–417.
  20. Hassan G.E. et al. // Opt. Mater. (Amst). North-Holland. 1996. V. 5. № 4. P. 327–332.
  21. Kabachii Y.A. et al. // Mendeleev Commun. 2021. V. 31. № 3. P. 315–318.
  22. Pradeep K.R., Viswanatha R. // APL Mater. 2020. V. 8. № 2. P. 20901.
  23. Pradhan N., Peng X. // J. Am. Chem. Soc. 2007. V. 129. № 11. P. 3339–3347.
  24. Klimov V.I. et al. // Phys. Rev. B. Am. Phys. Soc. 1999. V. 60. № 19. P. 13740.
  25. Pechstedt K. et al. // J. Phys. Chem. C. Am. Chem. Soc. 2010. V. 114. № 28. P. 12069–12077.
  26. Sethi R. et al. // Chem. Phys. Lett. North-Holland. 2010. V. 495. № 1–3. P. 63–68.
  27. de Jesus J.P.A., Jimenez M.Z., La Porta F. de A. // Comput. Mater. Sci. 2021. V. 188. P. 110147.
  28. Osman M.A., Abd-Elrahim A.G., Othman A.A. // J. Alloys Comp. 2017. V. 722. P. 344–357.
  29. Wang M. et al. // Chem. Cent. J. Bio. Med Central. 2011. V. 5. № 1. P. 1–10.
  30. Wang M. et al. // RSC Adv. Royal Soc. Chem. 2015. V. 5. № 106. P. 87496–87503.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Absorption spectra of Mn2+:ZnCdS/ZnS QDs dissolved in water 1, propylene carbonate 2 and cyclohexane 3. (a) Spectra in the form of second derivatives, (b) absorption spectra.

Жүктеу (491KB)
3. Fig. 2. Luminescence spectra of Mn2+:ZnCdS/ZnS QDs dissolved in water 1, propylene carbonate 2 and cyclohexane 3 at excitation at 360 nm. (a) Luminescence spectra in the form of the second derivative, (b) luminescence spectra.

Жүктеу (493KB)
4. Fig. 3. Differential spectra of Mn2+:ZnCdS/ZnS after excitation with a 360 nm (3.44 eV) pulse for QDs dissolved in cyclohexane, propylene carbonate and water.

Жүктеу (362KB)
5. Fig. 4. Transient absorption spectra of Mn2+:ZnCdS/ZnS QDs dissolved in cyclohexane (a), propylene carbonate (b) and water (c). The inset in Fig. (b) shows the BL1 decay kinetics for QDs dissolved in cyclohexane (line 1) and propylene carbonate (line 2). Spectrum delay time in picoseconds. The dash-dotted line shows the absorption spectrum of QDs as the second derivative.

Жүктеу (828KB)
6. Fig. 5. Averaged spectra of combined scattering of QDs dissolved in cyclohexane (black spectrum) and QDs dissolved in water (gray spectrum).

Жүктеу (301KB)

© Russian Academy of Sciences, 2025