Obtaining nanoabrassive for magnetoreological polishing of KDP crystals

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Magneto-rheological polishing technology is widely used in the processing of high-precision optical elements. One of the determining factors in magnetorheological polishing technology is the nature and quality of the nanoabrasive in the composition of the magnetorheological suspension. In this study, a method has been developed for the sol-gel synthesis of amorphous silicon dioxide nanospheres used as a nanoabrasive for magnetorheological polishing of water-soluble crystals used for the manufacture of nonlinear optical elements of laser technology. The technical result was achieved by introducing synthesized silicon dioxide nanoabrasive into the composition of the magnetorheological suspension. The physicochemical characteristics of the resulting nanoabrasive are presented. The results of electron microscopy confirm the spherical morphology of SiO2 particles, and a particle size distribution varying in the range of 40–60 nm has been established, which ensures the uniformity and quality of surface treatment of optical elements with a magnetorheological suspension. The structural properties of SiO2 nanoabrasive were studied by X-ray powder diffraction. The introduction of SiO2 nanoabrasive into the magnetorheological suspension made it possible to achieve high quality processing and surface cleanliness, and also ensured final polishing of the surface of KDP single crystals to a roughness value of no more than 6 Å. The results of the work are of interest for optimizing the process and improving the technology of magnetorheological polishing.

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Belov

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Институт физики микроструктур РАН

Хат алмасуға жауапты Автор.
Email: bdv@ipfran.ru
Ресей, ул. Ульянова, 46, Нижний Новгород, 603950; ул. Академическая, 7, д. Афонино, Кстовский р-н, Нижегородская обл., 603950

S. Belyaev

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Институт физики микроструктур РАН

Email: bdv@ipfran.ru
Ресей, ул. Ульянова, 46, Нижний Новгород, 603950; ул. Академическая, 7, д. Афонино, Кстовский р-н, Нижегородская обл., 603950

O. Malshakova

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Институт физики микроструктур РАН

Email: bdv@ipfran.ru
Ресей, ул. Ульянова, 46, Нижний Новгород, 603950; ул. Академическая, 7, д. Афонино, Кстовский р-н, Нижегородская обл., 603950

N. Sorokoletova

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: bdv@ipfran.ru
Ресей, ул. Ульянова, 46, Нижний Новгород, 603950; пр. Гагарина, 23, Нижний Новгород, 603022

E. Serebrov

Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Email: bdv@ipfran.ru
Ресей, ул. Ульянова, 46, Нижний Новгород, 603950; пр. Гагарина, 23, Нижний Новгород, 603022

Әдебиет тізімі

  1. Zhang L., Wang S., Li T., Zhu L., Ye Z. Properties of nonlinear optical absorption and refraction of rapidly grown KDP crystals // Ceramics International. 2024. V. 50. № 7. Part B. P. 11756–11765. https://doi.org/10.1016/j.ceramint.2024.01.080
  2. Zhang S., Zong W. Micro defects on diamond tool cutting edge affecting the ductile-mode machining of KDP crystal // Micromachines. 2020. V. 11. № 12. P. 1102. https://doi.org/10.3390/mi11121102
  3. Bogush G.H., Tracy M.A., Zukoski C.F. Preparation of monodisperse silica particles: Control of size and mass fraction // Journal of Non-Crystalline Solids. 1988. V. 104. № 1. P. 95–106. https://doi.org/10.1016/0022-3093(88)90187-1
  4. Lindberg R., Sjöblom J., Sundholm G. Preparation of silica particles utilizing the sol-gel and the emulsion-gel processes // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1995. V. 99. № 1. P. 79–88. https://doi.org/10.1016/0927-7757(95)03117-V
  5. Singh L.P., Bhattacharyya S.K., Kumar R. et. al. Sol-Gel processing of silica nanoparticles and their applications // Advances in Colloid and Interface Science. 2014. V. 214. P. 17–37. https://doi.org/10.1016/j.cis.2014.10.007
  6. Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range // Journal of Colloid and Interface Science. 1968. V. 26. № 1. P. 62–69. https://doi.org/10.1016/0021-9797(68)90272-5
  7. Koch C.C. Nanostructured materials. Processing, Properties and Applications. 2nd edition: Elsevier, 2006.
  8. Wright J.D., Sommerdijk N.A.J.M. Sol-gel materials: Chemistry and applications. CRC Press, 2000. 136 p. https://doi.org/10.1201/9781315273808
  9. Sakka S. Handbook of sol-gel science and technology: Applications of sol-gel technology. Springer Science & Business Media, 2005. 716 p.
  10. da Silva A.S., dos Santos J.H.Z. Stöber method and its nuances over the years // Advances in Colloid and Interface Science. 2023. V. 314. P. 102888. https://doi.org/10.1016/j.cis.2023.102888
  11. Хлебцов Б.Н., Буров А.М. Синтез монодисперсных силикатных частиц методом контролируемого доращивания // Коллоид. журн. 2023. Т. 85. № 3. С. 376–389. https://doi.org/10.31857/S0023291223600293
  12. Зарипов А.К. Упругие свойства магнитных жидкостей // Коллоид. журн. 2021. Т. 83. № 6. С. 634–643. https://doi.org/10.31857/S0023291221060185
  13. Cheng H., Yeung Y., Tong H. Viscosity behavior of magnetic suspensions in fluid-assisted finishing // Progress in Natural Science. 2008. V. 18. № 1. P. 91–96. https://doi.org/10.1016/j.pnsc.2007.07.007
  14. Shulman Z.P., Kordonsky V.I., Zaltsgendler E.A. et. al. Structure, physical properties and dynamics of magnetorheological suspensions // International Journal of Multiphase Flow. 1986. V. 12. № 6. P. 935–955. https://doi.org/10.1016/0301-9322(86)90036-4
  15. Bossis G., Lacis S., Meunier A., Volkova O. Magnetorheological fluids // Journal of Magnetism and Magnetic Materials. 2002. V. 252. P. 224–228. https://doi.org/10.1016/S0304-8853(02)00680-7
  16. Jacobs S.D., Shorey A.B. Magnetorheological finishing: New fluids for new materials. In Optical Fabrication and Testing, 2000. p. OWB1. https://doi.org/10.1364/OFT.2000.OWB1
  17. Bedi T.S., Singh A.K. Magnetorheological methods for nanofinishing – a review // Particulate Science and Technology. 2015. V. 34. № 4. P. 412–422. https://doi.org/10.1080/02726351.2015.1081657
  18. Jacobs S.D. Manipulating mechanics and chemistry in precision optics finishing // Science and Technology of Advanced Materials. 2007. V. 8. № 3. P. 153–157. https://doi.org/10.1016/j.stam.2006.12.002
  19. Русецкий А.М., Новикова З.А., Городкин Г.Р., Коробко Е.В. Разработка магнитоструктурирующихся жидкостей с управляемой реологией для технологии // Доклады НАН Беларуси. 2011. Т. 55. № 5. С. 97–104.
  20. Глеб Л.К., Городкин Г.Р., Горшков В.А., Хлебников Ф.П., Семенов Е.В. Применение магнитореологических методов обработки оптических деталей на серии автоматизированных полировально-доводочных станков // Оптический журнал. 2011. Т. 78. № 4. С. 33–36.
  21. Yu X.L., Yang W., Chen C.X., Zhu F.W. Magnetic composite fluid optimization for KDP crystal polishing based on a D-optimal mixture design // Applied Optics. 2023. V. 62. № 4. P. 1019–1026. https://doi.org/10.1364/AO.481344
  22. Amir M., Mishra V., Sharma R., Ali S.W., Khan G.S. Polishing performance of a magnetic nanoparticle-based nanoabrasive for superfinish optical surfaces // Applied Optics. 2022. V. 61. № 17. P. 5179–5188. https://doi.org/10.1364/AO.456819
  23. Бредихин В.И. Кристаллы типа KDP для мощных лазерных систем: проблемы скоростного роста и оптические свойства // Дисс. докт. физ.-мат наук. 2010. 274 с.
  24. Андреев Н.Ф., Бабин А.А., Бредихин В.И., Ершов В.П. Производство крупногабаритной оптики из водорастворимых кристаллов // Фотоника. 2007. № 5. С. 34–37.
  25. Белов Д.В., Беляев С.Н. Патент № 2808226 на изобретение “Состав магнитореологической суспензии для финишной обработки оптических элементов на основе водорастворимых кристаллов”, 28.11.2023 (по заявке № 2023122895 от 04.09.2023).
  26. Lucovsky G. Low-temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 1987. V. 5. № 2. P. 530–537. https://doi.org/10.1116/1.583944
  27. Kim J.-T., Kim M.-C. Silicon wafer technique for infrared spectra of silica and solid samples (I) // Korean Journal of Chemical Engineering. 1986. V. 3. № 1. P. 45–51. https://doi.org/10.1007/BF02697522
  28. Артамонова О.В., Сергуткина О.Р., Останкова И.В., Шведова М.А. Синтез нанодисперсного модификатора на основе SiO2 для цементных композитов // Конденсированные среды и межфазные границы. 2014. Т. 16. № 2. С. 152–162.
  29. Хлуднева А.С., Карпов С.И., Ресснер Ф., Селеменев В.Ф. Структура и сорбционные свойства мезопористых кремнеземов, синтезированных при варьировании температуры и кремниевой основы // Сорбционные и хроматографические процессы. 2021. Т. 21. № 5. С. 669–680. https://doi.org/10.17308/sorpchrom.2021.21/3773
  30. Васькевич В.В., Гайшун В.Е., Коваленко Д.Л. Синтез и исследование силикатных золь-гель покрытий для микро- и наноэлектроники // Nanosystems, Nanomaterials, Nanotechnologies. 2014. Т. 12. № 2. С. 279–293.
  31. Peng X., Jiao F., Chen H., Tie G., Shi F., Hu H. Novel magnetorheological figuring of KDP crystal // Chinese Optics Letters. 2011. V. 9. № 10. P. 102201–102205. https://doi.org/10.3788/col201109.102201
  32. Wang D., Shinmura T., Yamaguchi H. Study of magnetic field assisted mechanochemical polishing process for inner surface of Si3N4 ceramic components // International Journal of Machine Tools and Manufacture. 2004. V. 44. № 14. P. 1547–1553. https://doi.org/10.1016/j.ijmachtools.2004.04.024
  33. Geng Z., Huang N., Castelli M., Fang F. Polishing approaches at atomic and close-to-atomic scale // Micromachines. 2023. V. 14. № 2. P. 343. https://doi.org/10.3390/mi14020343
  34. Shorey A.B., Jacobs S.D., Kordonski W.I., Gans R.F. Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing // Applied Optics. 2001. V. 40. № 1. P. 20–33. https://doi.org/10.1364/ao.40.000020

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Photographs of a magnetorheological suspension outside a magnetic field (a), in the presence of a magnetic field (b).

Жүктеу (48KB)
3. Fig. 2. Photograph of a nonlinear optical element made of a single-crystal KDP crystal measuring 180×180×10 mm.

Жүктеу (17KB)
4. Fig. 3. Photograph of the magnetorheological polishing module: working tool block (I); magnetorheological suspension circulation block (II): MRS feed nozzle (1); non-magnetic surface of the rotating tool (2); surface of the workpiece NRE (3); local working area of ​​processing – contact spot (4).

Жүктеу (17KB)
5. Fig. 4. SEM micrographs: synthesized SiO2 nanospheres obtained by the sol-gel method (a), (b), inset - histogram of particle size distribution; pyrogenic “Aerosil” grade A-300 (c); amorphous silica grade “Polysorb” (d), insets - total spectra of local elemental analysis.

Жүктеу (86KB)
6. Fig. 5. Diffraction patterns of SiO2 nanopowder obtained by the sol-gel method (1); pyrogenic “Aerosil” brand A-300 (2); amorphous silica brand “Polysorb” (3).

Жүктеу (19KB)
7. Fig. 6. IR transmission spectra of SiO2 nanopowder obtained by the sol-gel method (1); pyrogenic “Aerosil” brand A-300 (2); amorphous silica brand “Polysorb” (3).

Жүктеу (22KB)
8. Fig. 7. Surface of the NOE after magnetorheological polishing: 10x, without SiO2 nanoabrasive (a); 50x, in the presence of SiO2 nanoabrasive (b); 10x, in the presence of Aerosil brand A-300 (c); 10x, in the presence of Polysorb brand silica (d).

Жүктеу (58KB)
9. Fig. 8. Surface roughness assessment: before MR treatment, rms = 3.32 nm (a); after MR treatment, rms = 0.64 nm (b).

Жүктеу (71KB)
10. Fig. 9. Schematic representation of the mechanism of action of SiO2 nanoabrasive during magnetorheological polishing of the surface of a KDP single crystal: removal of the thinnest layers of material from the surface (a); pressing of nanoabrasive particles into the surface layers of the material (b).

Жүктеу (37KB)

© Russian Academy of Sciences, 2024