Enzyme-Like Activity of Cerium Dioxide Colloidal Solutions Stabilized with L-Malic Acid

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the first time, stable aqueous colloidal solutions of cerium dioxide stabilized with L-malic acid have been obtained at ligand : CeO2 molar ratios of 0.2, 0.5, 1.0, and 2.0. Using dynamic light scattering, it has been shown that CeO2 sols are characterized by a narrow monomodal size distribution of aggregates, and the sols remain to be aggregatively stable in a Tris-HCl buffer solution. According to the chemiluminescence analysis of the enzyme-like activity of cerium dioxide sols with respect to hydrogen peroxide, the surface modification of the cerium dioxide particles with malic acid increases the enzyme-like activity of СеО2 up to 4.5 times.

作者简介

A. Filippova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский просп. 31

A. Baranchikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский просп. 31

V. Ivanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russia

编辑信件的主要联系方式.
Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский просп. 31

参考

  1. Shao C., Shen A., Zhang M. et al. Oxygen vacancies enhanced CeO2:Gd nanoparticles for sensing a tumor vascular microenvironment by magnetic resonance imaging // ACS Nano. 2018. V. 12. № 12. P. 12629–12637. https://doi.org/10.1021/acsnano.8b07387
  2. Eriksson P., Tal A.A., Skallberg A. et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement // Scientific Reports. 2018. V. 8. № 1. P. 6999. https://doi.org/10.1038/s41598-018-25390-z
  3. Tapeinos C., Battaglini M., Prato M. et al. CeO2 Nanoparticles-loaded pH-responsive microparticles with antitumoral properties as therapeutic modulators for osteosarcoma // ACS Omega. 2018. V. 3. № 8. P. 8952–8962. https://doi.org/10.1021/acsomega.8b01060
  4. Pi F., Deng X., Xue Q. et al. Alleviating the hypoxic tumor microenvironment with MnO2-coated CeO2 nanoplatform for magnetic resonance imaging guided radiotherapy // Journal of Nanobiotechnology. 2023. V. 21. № 1. P. 90. https://doi.org/10.1186/s12951-023-01850-1
  5. Augustine R., Hasan A., Patan N.K. et al. Cerium oxide nanoparticle incorporated electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes for diabetic wound healing applications // ACS Biomaterials Science & Engineering. 2020. V. 6. № 1. P. 58–70. https://doi.org/10.1021/acsbiomaterials.8b01352
  6. Kim D.W., Le T.M.D., Lee S.M. et al. Microporous organic nanoparticles anchoring CeO2 materials: Reduced toxicity and efficient reactive oxygen species-scavenging for regenerative wound healing // ChemNanoMat. 2020. V. 6. № 7. P. 1104–1110. https://doi.org/10.1002/cnma.202000067
  7. Rather H.A., Thakore R., Singh R. et al. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-gelatin electrospun fibers for wound healing application // Bioactive Materials. 2018. V. 3. № 2. P. 201–211. https://doi.org/10.1016/j.bioactmat.2017.09.006
  8. Zheng H., Wang S., Cheng F. et al. Bioactive anti-inflammatory, antibacterial, conductive multifunctional scaffold based on MXene@CeO2 nanocomposites for infection-impaired skin multimodal therapy // Chemical Engineering Journal. 2021. V. 424. P. 130148. https://doi.org/10.1016/j.cej.2021.130148
  9. Ermakov A., Popov A., Ermakova O. et al. The first inorganic mitogens: Cerium oxide and cerium fluoride nanoparticles stimulate planarian regeneration via neoblastic activation // Materials Science and Engineering: C. 2019. V. 104. P. 109924. https://doi.org/10.1016/j.msec.2019.109924
  10. Shcherbakov A.B., Reukov V.V., Yakimansky A.V. et al. CeO2 nanoparticle-containing polymers for biomedical applications: A review // Polymers. 2021. V. 13. № 6. P. 924. https://doi.org/10.3390/polym13060924
  11. Ivanov V.K., Polezhaeva O.S., Tret’yakov Y.D. Nanocrystalline ceria: Synthesis, structure-sensitive properties, and promising applications // Russian Journal of General Chemistry. 2010. V. 80. № 3. P. 604–617. https://doi.org/10.1134/S1070363210030412
  12. Saravanakumar K., Sathiyaseelan A., Mariadoss A.V.A. et al. Antioxidant and antidiabetic properties of biocompatible ceria oxide (CeO2) nanoparticles in mouse fibroblast NIH3T3 and insulin resistant HepG2 cells // Ceramics International. 2021. V. 47. № 6. P. 8618–8626. https://doi.org/10.1016/j.ceramint.2020.11.230
  13. Naz S., Kazmi S.T.B., Zia M. CeO2 Nanoparticles synthesized through green chemistry are biocompatible: In vitro and in vivo assessment // Journal of Biochemical and Molecular Toxicology. 2019. V. 33. № 5. P. e22291. https://doi.org/10.1002/jbt.22291
  14. Uzair B., Akhtar N., Sajjad S. et al. Targeting microbial biofilms: By Arctium lappa L. synthesised biocompatible CeO2-NPs encapsulated in nano-chitosan // IET Nanobiotechnology. 2020. V. 14. № 3. P. 217–223. https://doi.org/10.1049/iet-nbt.2019.0294
  15. Ahamed M., Akhtar M.J., Khan M.A.M. et al. Evaluation of the cytotoxicity and oxidative stress response of CeO2-RGO nanocomposites in human lung epithelial A549 cells // Nanomaterials. 2019. V. 9. № 12. P. 1709. https://doi.org/10.3390/nano9121709
  16. Abbas F., Iqbal J., Maqbool Q. et al. ROS mediated malignancy cure performance of morphological, optical, and electrically tuned Sn doped CeO2 nanostructures // AIP Advances. 2017. V. 7. № 9. P. 095205. https://doi.org/10.1063/1.4990790
  17. Ma Y., Tian Z., Zhai W. et al. Insights on catalytic mechanism of CeO2 as multiple nanozymes // Nano Research. 2022. V. 15. № 12. P. 10328–10342. https://doi.org/10.1007/s12274-022-4666-y
  18. Xiao G., Li H., Zhao Y. et al. Nanoceria-based artificial nanozymes: Review of materials and applications // ACS Applied Nano Materials. 2022. V. 5. № 10. P. 14147–14170. https://doi.org/10.1021/acsanm.2c03009
  19. Popov A.L., Shcherbakov A.B., Zholobak N.M. et al. Cerium dioxide nanoparticles as third-generation enzymes (nanozymes) // Nanosystems: Physics, Chemistry, Mathematics. 2017. P. 760–781. https://doi.org/10.17586/2220-8054-2017-8-6-760-781
  20. Feng N., Liu Y., Dai X. et al. Advanced applications of cerium oxide based nanozymes in cancer // RSC Advances. 2022. V. 12. № 3. P. 1486–1493. https://doi.org/10.1039/D1RA05407D
  21. Sozarukova M.M., Proskurnina E. V., Popov A.L. et al. New facets of nanozyme activity of ceria: lipo- and phospholipoperoxidase-like behaviour of CeO2 nanoparticles // RSC Advances. 2021. V. 11. № 56. P. 35351–35360. https://doi.org/10.1039/D1RA06730C
  22. Kim C.K., Kim T., Choi I.-Y. et al. Ceria nanoparticles that can protect against ischemic stroke // Angewandte Chemie International Edition. 2012. V. 51. № 44. P. 11039–11043. https://doi.org/10.1002/anie.201203780
  23. Gulicovski J.J., Milonjić S.K., Szécsényi K.M. Synthesis and characterization of stable aqueous ceria sols // Materials and Manufacturing Processes. 2009. V. 24. № 10–11. P. 1080–1085. https://doi.org/10.1080/10426910903032162
  24. Habib I.Y., Kumara N.T.R.N., Lim C.M. et al. Dynamic light scattering and zeta potential studies of ceria nanoparticles // Solid State Phenomena. 2018. V. 278. P. 112–120. https://doi.org/10.4028/www.scientific.net/SSP.278.112
  25. Huang L., Zhang W., Chen K. et al. Facet-selective response of trigger molecule to CeO2 {1 1 0} for up-regulating oxidase-like activity // Chemical Engineering Journal. 2017. V. 330. P. 746–752. https://doi.org/10.1016/j.cej.2017.08.026
  26. Yadav N., Patel V., McCourt L. et al. Tuning the enzyme-like activities of cerium oxide nanoparticles using a triethyl phosphite ligand // Biomaterials Science. 2022. V. 10. № 12. P. 3245–3258. https://doi.org/10.1039/D2BM00396A
  27. Wu J., Wang X., Wang Q. et al. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II) // Chemical Society Reviews. 2019. V. 48. № 4. P. 1004–1076. https://doi.org/10.1039/C8CS00457A
  28. Gupta A., Das S., Neal C.J. et al. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications // Journal of Materials Chemistry B. 2016. V. 4. № 19. P. 3195–3202. https://doi.org/10.1039/C6TB00396F
  29. Lee S.S., Song W., Cho M. et al. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating // ACS Nano. 2013. V. 7. № 11. P. 9693–9703. https://doi.org/10.1021/nn4026806
  30. Lazić V., Živković L.S., Sredojević D. et al. Tuning properties of cerium dioxide nanoparticles by surface modification with catecholate-type of ligands // Langmuir. 2020. V. 36. № 33. P. 9738–9746. https://doi.org/10.1021/acs.langmuir.0c01163
  31. Wu Q., Yang L., Zou L. et al. Small ceria nanoclusters with high ROS Scavenging activity and favorable Pharmacokinetic parameters for the amelioration of chronic kidney disease // Advanced Healthcare Materials. 2023. P. 2300632.https://doi.org/10.1002/adhm.202300632
  32. Casals E., Zeng M., Parra-Robert M. et al. Cerium oxide nanoparticles: Advances in biodistribution, toxicity, and preclinical exploration // Small. 2020. V. 16. № 20. P. 1907322. https://doi.org/10.1002/smll.201907322
  33. Szentmihályi K., Szilágyi M., Balla J. et al. In vitro antioxidant activities of magnesium compounds used in food industry // Acta Alimentaria. 2014. V. 43. № 3. P. 419–425. https://doi.org/10.1556/AAlim.43.2014.3.8
  34. Jin X., Yang R., Yan X. et al. Malic acid and oxalic acid spraying enhances phytic acid degradation and total antioxidant capacity of mung bean sprouts // International Journal of Food Science & Technology. 2016. V. 51. № 2. P. 370–380. https://doi.org/10.1111/ijfs.12941
  35. Qiu K., He W., Zhang H. et al. Bio-fermented malic acid facilitates the production of high-quality chicken via enhancing muscle antioxidant capacity of broilers // Antioxidants. 2022. V. 11. № 12. P. 2309. https://doi.org/10.3390/antiox11122309
  36. Huang Z.W., Laurent V., Chetouani G. et al. New functional degradable and bio-compatible nanoparticles based on poly(malic acid) derivatives for site-specific anti-cancer drug delivery // International Journal of Pharmaceutics. 2012. V. 423. № 1. P. 84–92. https://doi.org/10.1016/j.ijpharm.2011.04.035
  37. Huang X., Xu L., Qian H. et al. Polymalic acid for translational nanomedicine // Journal of Nanobiotechnology. 2022. V. 20. № 1. P. 295. https://doi.org/10.1186/s12951-022-01497-4
  38. Zhang J., Chen D., Liang G. et al. Biosynthetic polymalic acid as a delivery nanoplatform for translational cancer medicine // Trends in Biochemical Sciences. 2021. V. 46. № 3. P. 213–224. https://doi.org/10.1016/j.tibs.2020.09.008
  39. Ljubimova J.Y., Fujita M., Khazenzon N.M. et al. Nanoconjugate based on polymalic acid for tumor targeting // Chemico-Biological Interactions. 2008. V. 171. № 2. P. 195–203. https://doi.org/10.1016/j.cbi.2007.01.015
  40. Hirschey M.D., Han Y.-J., Stucky G.D. et al. Imaging Escherichia coli using functionalized Core/Shell CdSe/CdS quantum dots // JBIC Journal of Biological Inorganic Chemistry. 2006. V. 11. № 5. P. 663–669. https://doi.org/10.1007/s00775-006-0116-7
  41. Huang Y.-C., Wu S.-H., Hsiao C.-H. et al. Mild synthesis of size-tunable CeO2 octahedra for band gap variation // Chemistry of Materials. 2020. V. 32. № 6. P. 2631–2638. https://doi.org/10.1021/acs.chemmater.0c00318
  42. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, 2009.
  43. Prieur D., Bonani W., Popa K. et al. Size dependence of lattice parameter and electronic structure in CeO2 nanoparticles // Inorganic Chemistry. 2020. V. 59. № 8. P. 5760–5767. https://doi.org/10.1021/acs.inorgchem.0c00506
  44. Badertscher M., Bühlmann P., Pretsch E. Structure determination of organic compounds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. 174 p. https://doi.org/10.1007/978-3-540-93810-1
  45. Bellami L.J. The Infrared Spectra of Complex Molecules. New York, NY: John Wiley & Sons, 1954. 321 p.
  46. Daré R.G., Kolanthai E., Neal C.J. et al. Cerium oxide nanoparticles conjugated with tannic acid prevent uvb-induced oxidative stress in fibroblasts: Evidence of a promising anti-photodamage agent // Antioxidants. 2023. V. 12. № 1. P. 190. https://doi.org/10.3390/antiox12010190
  47. Nastasiienko N., Palianytsia B., Kartel M. et al. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and FT–IR spectroscopy // Colloids and Interfaces. 2019. V. 3. № 1. P. 34. https://doi.org/10.3390/colloids3010034
  48. Petrova N., Todorovsky D., Angelova S. et al. Synthesis and characterization of cerium citric and tartaric complexes // Journal of Alloys and Compounds. 2008. V. 454. № 1–2. P. 491–500. https://doi.org/10.1016/j.jallcom.2007.01.005
  49. Hancock M.L., Yokel R.A., Beck M.J. et al. The characterization of purified citrate-coated cerium oxide nanoparticles prepared via hydrothermal synthesis // Applied Surface Science. 2021. V. 535. P. 147681. https://doi.org/10.1016/j.apsusc.2020.147681
  50. Ivanov V.K., Polezhaeva O.S., Shaporev A.S. et al. Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acids // Russian Journal of Inorganic Chemistry. 2010. V. 55. № 3. P. 328–332. https://doi.org/10.1134/S0036023610030046
  51. Vlasova N.M., Markitan O.V. Complexation on the oxide surfaces: Adsorption of biomolecules from aqueous solutions: A review // Theoretical and Experimental Chemistry. 2022. V. 58. № 1. P. 1–14. https://doi.org/10.1007/s11237-022-09716-7
  52. Janusz W., Skwarek E. Adsorption of malic acid at the hydroxyapatite/aqueous NaCl solution interface // Applied Nanoscience. 2022. V. 12. № 4. P. 1355–1363. https://doi.org/10.1007/s13204-021-01938-w
  53. Shcherbakov A.B., Teplonogova M.A., Ivanova O.S. et al. Facile method for fabrication of surfactant-free concentrated CeO2 sols // Materials Research Express. 2017. V. 4. № 5. P. 055008. https://doi.org/10.1088/2053-1591/aa6e9a
  54. Plakhova T.V., Romanchuk A.Y., Yakunin S.N. et al. Solubility of nanocrystalline cerium dioxide: Experimental data and thermodynamic modeling // The Journal of Physical Chemistry C. 2016. V. 120. № 39. P. 22615–22626. https://doi.org/10.1021/acs.jpcc.6b05650
  55. Grulke E.A., Beck M.J., Yokel R.A. et al. Surface-controlled dissolution rates: A case study of nanoceria in carboxylic acid solutions // Environmental Science: Nano. 2019. V. 6. № 5. P. 1478–1492. https://doi.org/10.1039/C9EN00222G
  56. Barany S., Bohacs K., Chepurna I. et al. Electrokinetic properties and stability of cerium dioxide suspensions // RSC Advances. 2016. V. 6. № 73. P. 69343–69351. https://doi.org/10.1039/C6RA12725H
  57. Robert J. P., Lennart B. Surface and Colloid Chemistry in Advanced Ceramics Processing / Ed. Pugh R.J., Bergstrom L. CRC Press, 2017. https://doi.org/10.1201/9780203737842
  58. Vlasova N.N., Golovkova L.P., Stukalina N.G. Adsorption of organic acids on a cerium dioxide surface // Colloid Journal. 2015. V. 77. № 4. P. 418–424. https://doi.org/10.1134/S1061933X15040201
  59. Izmailov D.Y., Proskurnina E. V., Shishkanov S.A. et al. The effect of antioxidants on the formation of free radicals and primary products of the peroxidase reaction // Biophysics. 2017. V. 62. № 4. P. 557–564. https://doi.org/10.1134/S0006350917040091
  60. Averchenko E.A., Kavok N.S., Klochkov V.K. et al. Chemiluminescent diagnostics of free-radical processes in an abiotic system and in liver cells in the presence of nanoparticles based on rare-earth elements NRe-VO4:Eu3+ (Re = Gd, Y, La) and CeO2 // Journal of Applied Spectroscopy. 2014. V. 81. № 5. P. 827–833. https://doi.org/10.1007/s10812-014-0012-9
  61. Iranifam M., Haggi A., Akhteh H. et al. Synthesis of rod-like CeO2 nanoparticles and their application to catalyze the luminal–O2 chemiluminescence reaction used in the determination of oxcarbazepine and ascorbic acid // Analytical Sciences. 2022. V. 38. № 5. P. 787–793. https://doi.org/10.1007/s44211-022-00096-5
  62. Zhao Y., Xu X., Ma Y. et al. A Novel peroxidase/oxidase mimetic Fe-porphyrin covalent organic framework enhanced the luminol chemiluminescence reaction and its application in glucose sensing // Luminescence. 2020. V. 35. № 8. P. 1366–1372. https://doi.org/10.1002/bio.3899
  63. Li D., Zhang S., Feng X. et al. A novel peroxidase mimetic Co-MOF enhanced luminol chemiluminescence and its application in glucose sensing // Sensors and Actuators B: Chemical. 2019. V. 296. P. 126631. https://doi.org/10.1016/j.snb.2019.126631
  64. Filippova A.D., Sozarukova M.M., Baranchikov A.E. et al. Peroxidase-like activity of CeO2 nanozymes: Particle size and chemical environment matter // Molecules. 2023. V. 28. № 9. P. 3811. https://doi.org/10.3390/molecules28093811
  65. Sozarukova M.M., Proskurnina E.V., Ivanov V.K. Pro-oxidant potential of CeO2 nanoparticles towards hydrogen peroxide // Nanosystems: Physics, Chemistry, Mathematics. 2021. V. 12. № 3. P. 283–290. https://doi.org/10.17586/2220-8054-2021-12-3-283-290
  66. Moreno-Castilla C., Naranjo Á., Victoria López-Ramón M. et al. Influence of the hydrodynamic size and ζ-potential of manganese ferrite nanozymes as peroxidase-mimicking catalysts at pH 4 in different buffers // Journal of Catalysis. 2022. V. 414. P. 179–185. https://doi.org/10.1016/j.jcat.2022.09.010
  67. Wu H., Sun Q., Chen J. et al. Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate // Chemical Engineering Journal. 2021. V. 425. P. 130640. https://doi.org/10.1016/j.cej.2021.130640

补充文件

附件文件
动作
1. JATS XML
2.

下载 (392KB)
3.

下载 (1MB)
4.

下载 (467KB)
5.

下载 (89KB)
6.

下载 (593KB)
7.

下载 (333KB)
8.

下载 (105KB)
9.

下载 (189KB)

版权所有 © А.Д. Филиппова, А.Е. Баранчиков, В.К. Иванов, 2023