INTERACTION OF GOLD AND NICKEL NANOPARTICLES WITH MOLECULAR HYDROGEN AND CARBON MONOXIDE IN THE PRESENCE OF AN ELECTRIC FIELD
- Authors: GRISHIN MV1, GATIN AK1, GOLUBEV EK2, DOKHLIKOVA N.V.1, OZERIN S.A.1, SARVADI S.Y.1, STEPANOV I.G.1, SLUTSKII V.G.1, KHARITONOV V.A.1, SHUB B.R.1
-
Affiliations:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia
- Issue: Vol 85, No 1 (2023)
- Pages: 19-27
- Section: Articles
- Submitted: 27.02.2025
- Published: 01.01.2023
- URL: https://gynecology.orscience.ru/0023-2912/article/view/671760
- DOI: https://doi.org/10.31857/S0023291222600407
- EDN: https://elibrary.ru/KEOADV
- ID: 671760
Cite item
Abstract
A nanostructured gold–nickel coating has been synthesized on the surface of pyrolytic graphite. Its physicochemical properties have been studied by scanning tunneling microscopy and spectroscopy, Auger spectroscopy, mass spectrometry, and other methods. It has been found that the coating consists of clusters formed by gold and nickel nanoparticles. It has been shown that an electric field can inhibit or stimulate the adsorption of hydrogen on gold and the reduction of the oxidized surface of nickel nanoparticles with carbon monoxide. The mechanisms of the influence of the field on the chemical processes involving H2 and CO are different. Quantum-chemical simulation has made it possible to determine the values of the energy barriers for CO adsorption on nickel nanoparticles.
About the authors
M V GRISHIN
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4
A K GATIN
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4
E K GOLUBEV
Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia
Email: mvgrishin68@yandex.ru
Россия, 117393, Москва, ул. Профсоюзная, д. 70
N. V. DOKHLIKOVA
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4
S. A. OZERIN
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4
S. YU. SARVADI
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4
I. G. STEPANOV
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4
V. G. SLUTSKII
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4
V. A. KHARITONOV
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4
B. R. SHUB
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Author for correspondence.
Email: mvgrishin68@yandex.ru
Россия, 119334, Москва, ул. Косыгина, д. 4
References
- Roldan Cuenya B. Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects // Thin Solid Films. 2010. V. 518. № 12. P. 3127. https://doi.org/10.1016/j.tsf.2010.01.018
- Gerasimov G.N., Ikim M.I., Gromov V.F., Ilegbusi O.J., Trakhtenberg L.I. Chemical modification of impregnated SnO2–In2O3 nanocomposites due to interaction of sensor components // Journal of Alloys and Compounds. 2021. V. 883. P. 160817. https://doi.org/10.1016/j.jallcom.2021.160817
- Wang X., Tang F., Qi X., Lin Z., Battocchi D., Chen X. Enhanced protective coatings based on nanopartic-le fullerene C60 for oil & gas pipeline corrosion mitigation // Nanomaterials. 2019. V. 9. № 10. P. 1476. https://doi.org/10.3390/nano9101476
- Chopani S.M.H., Asadi S., Heravi M.M. Application of bimetallic and trimetallic nanoparticles supported on graphene as novel heterogeneous catalysts in the reduction of nitroarenes, homo-coupling, Suzuki-Miyaura and Sonogashira reactions // Current Organic Chemistry. 2020. V. 24. № 19. P. 2216. https://doi.org/10.2174/1385272824999200914111559
- Keane M.A., Gomez-Quero S., Cardenas-Lizana F., Shen W. Alumina-supported Ni–Au: surface synergistic effects in catalytic hydrodechlorination // ChemCatChem. 2009. V. 1. № 2. P. 270. https://doi.org/10.1002/cctc.200900070
- Yuan G., Louis C., Delannoy L., Keane M.A. Silica- and titania-supported Ni–Au: application in catalytic hydrodechlorination // J. Catal. 2007. V. 247. № 2. P. 256. https://doi.org/10.1016/j.jcat.2007.02.008
- Wu Z., Zhao Z., Zhang M. Synthesis by replacement reaction and application of TiO2-supported Au–Ni bimetallic catalyst // ChemCatChem. 2010. V. 2. № 12. P. 1606. https://doi.org/10.1002/cctc.201000165
- Cardenas-Lizana F., Gomez-Quero S., Jacobs G., Ji Y., Davis B.H., Kiwi-Minsker L., Keane M.A. Alumina supported Au–Ni: surface synergism in the gas phase hydrogenation of nitro-compounds // J. Phys. Chem. C. 2012. V. 116. № 20. P. 11166. https://doi.org/10.1021/jp3025528
- Cardenas-Lizana F., Keane M.A. Gas phase selective hydrogenation over oxide supported Ni–Au // Phys. Chem. Chem. Phys. 2015. V. 17. № 42. P. 28088. https://doi.org/10.1039/c5cp00282f
- Wei H., Wei X., Yang X., Yin G., Wang A., Liu X., Huang Y., Zhang T. Supported Au−Ni nano-alloy catalysts for the chemoselective hydrogenation of nitroarenes // Chinese Journal of Catalysis. 2015. V. 36. № 2. P. 160. https://doi.org/10.1016/S1872-2067(14)60254-0
- Nikolaev S.A., Smirnov V.V. Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites // Catal. Today. 2009. V. 147. P. S336. https://doi.org/10.1016/j.cattod.2009.07.032
- Aguilar-Tapia A., Delannoy L., Louis C., Han C.W., Ortalan V., Zanella R. Selective hydrogenation of 1,3-butadiene over bimetallic Au–Ni/TiO2 catalysts prepared by deposition-precipitation with urea // J. Catal. 2016. V. 344. P. 515. https://doi.org/10.1016/j.jcat.2016.10.025
- Chai M., Liu X., Li L., Pei G., Ren Y., Su Y., Cheng H., Wang A., Zhang T. SiO2-supported Au–Ni bimetallic catalyst for the selective hydrogenation of acetylene // Chin. J. Catal. 2017. V. 38. № 8. P. 1338. https://doi.org/10.1016/S1872-2067(17)62869-9
- Ruppert A.M., Jedrzejczyk M., Potrzebowska N., Kazmierczak K., Brzezinska M., Sneka-Platek O., Sautet P., Keller N., Michel C., Grams J. Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source // Catal. Sci. Technol. 2018. V. 8. № 17. P. 4318. https://doi.org/10.1039/C8CY00462E
- Wang F., Zhang J.-C., Li W.-Z., Chen B.-H. Coke-resistant Au–Ni/MgAl2O4 catalyst for direct methanation of syngas // J. Energy Chem. 2019. V. 39. P. 198. https://doi.org/10.1016/j.jechem.2019.03.028
- Chin Y.-H., King D.L., Roh H.-S., Wang Y., Heald S.M. Structure and reactivity investigations on supported bimetallic Au−Ni catalysts used for hydrocarbon steam reforming // J. Catal. 2006. V. 244. Iss. 2. P. 153. https://doi.org/10.1016/j.jcat.2006.08.016
- Molenbroek A.M., Nørskov J.K., Clausen B.S. Structure and Reactivity of Ni−Au Nanoparticle Catalysts // J. Phys. Chem. B. 2001. V. 105. № 23. P. 5450. https://doi.org/10.1021/jp0043975
- Grishin M.V., Gatin A.K., Dokhlikova N.V., Kirsankin A.A., Kulak A.I., Nikolaev S.A., Shub B.R. Adsorption and interaction of hydrogen and oxygen on the surface of separate crystalline gold nanoparticles // Kinetics and Catalysis. 2015. V. 56. № 4. P. 532. https://doi.org/10.1134/S0023158415040084
- Grishin M.V., Gatin A.K., Sarvadii S.Y., Shub B.R. Study of adsorption and interaction of H2, O2, and CO on the surface of single gold nanoparticles and nickel by scanning tunneling microscopy // Nanotechnologies in Russia. 2017. V 12. № 11–12. P. 589. https://doi.org/10.1134/S1995078017060040
- Gatin A.K., Grishin M.V., Sarvadii S.Y., Shub B.R. Interaction of gaseous reagents on gold and nickel nanoparticles // Russian Journal of Physical Chemistry B. 2018. V. 12. № 2. P. 317. https://doi.org/10.1134/S1990793118020069
- Aragonès A.C., Haworth N.L., Darwish N., Ciampi S., Bloomfield N.J., Wallace G.G., Diez-Perez I., Coote M.L. Electrostatic catalysis of a Diels–Alder reaction // Nature. 2016. V. 531. P. 88. https://doi.org/10.1038/nature16989
- Martín L., Molins E., Vallribera A. Tuning and enhancement of the Mizoroki–Heck reaction using polarized Pd nanocomposite carbon aerogels // New J. Chem. 2016. V. 40. Iss. 12. P. 10208. https://doi.org/10.1039/C6NJ02279K
- Sarvadiy S.Y., Gatin A.K., Grishin M.V., Kharitonov V.A., Kolchenko N.N., Dokhlikova N.V., Shub B.R. Electric field–prevented adsorption of hydrogen on supported gold nanoparticles // Gold Bulletin. 2019. V. 52. № 2. P. 61. https://doi.org/10.1007/s13404-019-00253-1
- Sarvadii S.Y., Gatin A.K., Kharitonov V.A., Dokhlikova N.V., Ozerin S.A., Grishin M.V., Shub B.R. Effect of CO molecule orientation on the reduction of Cu-based nanoparticles // Nanomaterials. 2021. V. 11. № 2. 279. https://doi.org/10.3390/nano11020279
- Binnig G., Rohrer H., Berber C., Weibel E. Tunneling through a controllable vacuum gap // Appl. Phys. Lett. 1982. V. 40. № 2. P. 178. https://doi.org/10.1063/1.92999
- Meyer E., Hug H.J., Bennewitz R. Scanning Probe Microscopy. Berlin: Springer, 2004.
- Hamers R.J., Wang Y.J. Atomically-resolved studies of the chemistry and bonding at silicon surfaces // Chemical Reviews. 1996. V. 96. № 4. P. 1261. https://doi.org/10.1021/cr950213k
- Hamers R.J., Tromp R.M., Demuth J.E. Surface electronic structure of Si (111)–(7 × 7) resolved in real space // Phys. Rev. Let. 1986. V. 56. № 8. P. 1972. https://doi.org/10.1103/PhysRevLett.56.1972
- Schintke S., Messerli S., Pivetta M., Patthey F., Libioulle L., Stengel M., De Vita A., Schneider W.-D. Insulator at the ultrathin limit: MgO on Ag(001) // Phys. Rev. Let. 2002. V. 87. № 27. P. 276801. https://doi.org/10.1103/PhysRevLett.87.276801
- Kovalevskii S., Dalidchik F., Grishin M., Kolchenko N., Shub B. Scanning tunneling spectroscopy of vibrational transitions // Appl. Phys. A. 1998. V. 66. P. S125. https://doi.org/10.1007/s003390051114
- Irwin M.D., Buchholz D.B., Hains A.W., Chang R.P.H., Marks T.J. p -Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 8. P. 2783. https://doi.org/10.1073/pnas.0711990105
- Divi S., Chatterjee A. Generalized nano-thermodynamic model for capturing size-dependent surface segregation in multi-metal alloy nanoparticles // RSC Advances. 2018. V. 8. P. 10409. https://doi.org/10.1039/C8RA00945G
- Dey S., Mehta N.S. Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions: a review // Chemical Engineering Journal Advances. 2020. V. 1. 100008. https://doi.org/10.1016/j.ceja.2020.100008
- Grishin M.V., Gatin A.K., Kharitonov V.A., Ozerin S.A., Sarvadii S.Yu., Shub B.R. Interaction of gases with single clusters of gold and copper-based nanoparticles in the presence of electric fields // Russian Journal of Physical Chemistry B. 2022. V. 16. № 2. P. 211. https://doi.org/10.1134/S199079312232001X
- Vesecky S.M., Xu X., Goodman D.W. Infrared study of CO on NiO(100) // Journal of Vacuum Science & Technology A. 1994. V. 12. № 4. P. 2114. https://doi.org/10.1116/1.579146
- Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., Colonna N., Carnimeo I., Dal Corso A., de Gironcoli S., Delu-gas P., DiStasio Jr. R.A., Ferretti A., Floris A., Fratesi G., Fugallo G., Gebauer R., Gerstmann U., Giustino F., Gorni T., Jia J., Kawamura M., Ko H.-Y., Kokalj A., Küçükbenli E., Lazzeri M., Marsili M., Marzari N., Mauri F., Nguyen N.L., Nguyen H.-V., Otero-de-la-Roza A., Paulatto L., Poncé S., Rocca D., Sabatini R., Santra B., Schlipf M., Seitsonen A.P., Smogunov A., Timrov I., Thonhauser T., Umari P., Vast N., Wu X., Baroni S. Advanced capabilities for materials modelling with Quantum ESPRESSO // J. Phys. Condens. Matter. 2009. V. 21. P. 395502. https://doi.org/10.1088/1361-648X/aa8f79
- Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. 1996. V. 77. №. 18. P. 3865.
- Perdew J., Ruzsinsky A., Csonka G.I., Vydrov O.A., Scuseria G.E., Constantin L.A., Zhou X., Burke K. Restoring the density-gradient expansion for exchange in solids and surfaces // Phys. Rev. Lett. 2008. V. 100. № 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
- Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism // Phys. Rev. B. 1990. V. 41. № 11. P. 7892. https://doi.org/10.1103/PhysRevB.41.7892
Supplementary files
