Structural Organisation of Native Sub-Tundra Spruce Forests in the Pechora River Basin in the South-West of the Komi Republic

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of a comprehensive study of the structural organisation of indigenous sub-tundra’s spruce forests in the Pechora River basin in the northwest of the Komi Republic. The main components of the spruce phytocoenoses’ structure were analysed, including the size, age and spatial characteristics of the tree layer and the undergrowth. It has been established that stands of sub-tundra spruce forests are characterised by a high degree of variability in trees’ inventory indicators. The coefficients of variation in trunk diameters and heights reach 55 and 40%, respectively, even within a single species – Siberian spruce. Analysis of the age structure of tree stands revealed two types: relatively uneven-aged with a predominance of ascending series’ generations and absolutely uneven-aged with a group mixture of trees of different ages. The latter correspond to climax phytocoenoses with continuous self-reproduction. Spatial structure assessment conducted using the point process methods showed that trees in the stands are distributed mainly randomly, without pronounced aggregation. However, the undergrowth formed clusters, especially due to the seedling regeneration of birch. In the vertical structure of the canopy of sub-tundra spruce forests, both "diffuse" types of structure (trees vary in height, but are similar in the total height of the crown) and "regular at the bottom" types (trees vary in height, but the bases of their crowns are at the same level) are observed. The data obtained contribute to the understanding of the mechanisms of intact forest communities’ functioning in the Far North under the conditions of a changing climate.

Full Text

Restricted Access

About the authors

A. V. Manov

Institute of Biology of the Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: manov@ib.komisc.ru
Russian Federation, 28, Kommunisticheskaya St., Syktyvkar, 167982

I. N. Kutyavin

Institute of Biology of the Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences

Email: manov@ib.komisc.ru
Russian Federation, 28, Kommunisticheskaya St., Syktyvkar, 167982

References

  1. Baddeley A., Turner R., Spatstat: An R package for analyzing spatial point patterns, Journal of Statistical Software, 2005, Vol. 12, No. 6, pp. 1–42.
  2. Bondarev A.I., Sekretenko O.P., Osobennosti gorizontal'noi struktury drevesnogo yarusa tsenopopulyatsii Larix gmelinii (Rupr.) Rupr. v lesotundrovom ekotone na poluostrove Taimyr (Horizontal pattern of trees in the cenopopulation of Larix gmelinii (Rupr.) Rupr. in the forest tundra ecotone on the Taimyr Peninsula), Ekologiya, 2024, No. 1, pp. 22–33.
  3. Buzykin A.I., Gavrikov V.L., Sekretenko O.P., Khlebo-pros R.G., Analiz struktury drevesnykh tsenozov (Analysis of the wooded coenoses), Novosibirsk: Nauka, 1985, 94 p.
  4. Chertovskoi V.G., Semenov B.A., Shamin A.A., Prakticheskoe posobie po issledovaniyu predtundrovykh lesov (A practical guide to studying pre-tundra forests), Arkhangelsk: AILiLKh, 1977, 35 p.
  5. Chertovskoi V.G., Semenov B.A., Tsvetkov V.F., Smolonogov E.P., Vegerin A.M., Mironenko O.N., Tikhmenev E.A., Listov A.A., Predtundrovye lesa (Pre-tundra forests), Moscow: Agropromizdat, 1987, 168 p.
  6. Dyrenkov S.A., Struktura i dinamika taezhnykh el'nikov (Structure and dynamics of the boreal spruce forest), Leningrad: Nauka, 1984, 174 p.
  7. Faktory regulyatsii ekosistem elovykh lesov (Controlling factors in spruce forest ecosystems), Leningrad: Nauka, 1983, 318 p.
  8. Galenko E.P., Radiatsionnyi rezhim sosnovogo fitotsenoza kak element energoobmena (Radiation regime of pine phytocenosis as an element of energy exchange), In: Bioproduktsionnyi protsess v lesnykh ekosistemakh Severa (Bioproduction process in forest ecosystems of the North), Saint Petersburg: Nauka, 2001, pp. 91–102.
  9. Gavrikov V.L., Grabarnik P.Ya., Stoyan D., Trunk-top relations in a Siberian pine forest, Biometrical Journal, 1993, Vol. 35, No. 4, pp. 487–498.
  10. Gavrikov V.L., Stoyan D., The use of marked point processes in ecological and environmental forest studies, Environmental and Ecological Statistics, 1995, Vol. 2, No. 4, pp. 331–344.
  11. Grabarnik P., Myllymӓki M., Stoyan D., Correct testing of mark independence for marked point patterns, Ecological Modelling, 2011, Vol. 222, No. 23–24, pp. 3888–3894.
  12. Gusev I.I., Produktivnost' el'nikov Severa (Productivity of spruce forests of the North), Leningrad: LGU, 1978, 232 p.
  13. Harper K.A., Danby R.K., De Fields D.L., Lewis K.P., Trant A.J., Starzomski B.M., Savidge R., Hermanutz L., Tree spatial pattern within the forest–tundra ecotone: a comparison of sites across Canada, Canadian Journal of Forest Research, 2011, Vol. 41, No. 3, pp. 479–489. doi: 10.1139/X10-221
  14. Ipatov V.S., Tarkhova T.N., Kolichestvennyi analiz tsenoticheskikh effektov v razmeshchenii derev'ev po territorii (Coenotic contribution to distribution patterns of trees: a quantitative study), Botanicheskii zhurnal, 1975, Vol. 60, No. 9, pp. 1237–1250.
  15. Korchagin A.A., Stroenie rastitel'nykh soobshchestv (Structure of plant communities), In: Polevaya geobotanika (Field geobotany), Leningrad: Izd-vo AN SSSR, 1976, Vol. 5, pp. 5–319.
  16. Korennye elovye lesa Severa: bioraznoobrazie, struktura, funktsii (Virgin spruce forest on North: biodiversity, structure, functions), Saint-Petersburg: Nauka, 2006, 337 p.
  17. Kuz'michev V.V., Zakonomernosti dinamiki drevostoev: printsipy i modeli (Patterns in dynamics of forest stands: principles and models), Novosibirsk: Nauka, 2013, 207 p.
  18. Lesotaksatsionnyi spravochnik po severo-vostoku evropeiskoi chasti Rossiiskoi Federatsii (Handbook on the forest taxation in northeast of European part of the Russian Federation), Arkhangelsk: SevNIILKh : Pravda Severa, 2012, 672 p.
  19. Manov A.V., Kutyavin I.N., Gorizontal'naya struktura drevostoev i podrosta severotaezhnykh korennykh el'nikov chernichno-sfagnovykh v Priural'e (Horizontal structure of forest stands and new growth of Northern taiga virgin blueberry-sphagnum spruce forests in Cisurals), Izvestiya vysshikh uchebnykh zavedenii. Lesnoi zhurnal., 2018, No. 6, pp. 78–88.
  20. Manov A.V., Kutyavin I.N., Prostranstvennye vzaimosvyazi v razmeshchenii drevesnykh rastenii v srednetaezhnykh korennykh el'nikakh verkhov'ev reki Pechory (Spatial interrelations in the placement of woody plants in the middle taiga virgin spruce forests of the upper reaches of the Pechora River), Sibirskii lesnoi zhurnal, 2021, No. 2, pp. 82–95.
  21. Manov A.V., Struktura, dinamika rosta i produktivnost' drevostoev pritundrovykh el'nikov Pechorskogo basseina. Avtoref. diss. kand. s.-kh. nauk (Structure, growth dynamics and productivity of forest stands of tundra spruce forests of the Pechora basin. Extended abstract of Candidate's agric. sci. thesis), Arkhangelsk: AGTU, 2009, 18 p.
  22. Mazing V.V., Chto takoe struktura biogeotsenoza (What is the structure of biogeocoenosis?), In: Problemy biogeotsenologii (Challenges in biogeocoenology), Moscow: Nauka, 1973, pp. 71–78.
  23. Metody izucheniya lesnykh soobshchestv (Methods of forest communities study), Saint Petersburg: Izd-vo NII Khimii SPbGU, 2002, 240 p.
  24. Plotnikov V.V., Evolyutsiya struktury rastitel'nykh soobshchestv (Evolution of structure of plant communities), Moscow: Nauka, 1979, 276 p.
  25. Pretzsch H., Schütze G., Effect of tree species mixing on the size structure, density, and yield of forest stands, European Journal of Forest Research, 2016, Vol. 135, No. 1, pp. 1–22.
  26. Proskuryakov M.A., Gorizontal'naya struktura gornykh temnokhvoinykh lesov (Horizontal structure of montane dark coniferous forests), Alma-Ata: Nauka, 1983, 215 p.
  27. R Core Team. R: A language and environment for statistical computing, Vienna, Austria: R Foundation for Statistical Computing, 2022.
  28. Semenov B.A., Tsvetkov V.F., Chibisov G.A., Elizarov F.P., Pritundrovye lesa Evropeiskoi chasti Rossii: priroda i vedenie khozyaistva (Tundra forests in European part of Russia: environment and management), Arkhangelsk: Izd-vo SevNIILKh, 1998, 332 p.
  29. Storozhenko V.G., Formirovanie vozrastnykh struktur korennykh taezhnykh el'nikov Evropeiskoi Rossii (Formation of age structures of indigenous taiga spruce forests in European Russia), Lesovedenie, 2022, No. 1, pp. 3–12.
  30. Storozhenko V.G., Ustoichivye lesnye soobshchestva: teoriya i eksperiment (Sustainable forest communities: theory and experiment), Moscow: Grif i K, 2007, 190 p.
  31. Stoyan D., Penttinen A., Recent applications of point process methods in forestry statistics, Statistical Science, 2000, Vol. 15, No. 1, pp. 61–78.
  32. Suzuki R., Shimodaira H., Pvclust: an R package for assessing the uncertainty in hierarchical clustering, Bioinformatics, 2006, Vol. 22, No. 12, pp. 1540–1542. doi: 10.1093/bioinformatics/btl117
  33. Tsvetkov V.F., Lesnoi biogeotsenoz (Forest biogeocoenosis), Arkhangelsk: Izd-vo AGTU, 2004, 267 p.
  34. Wiegand T., Moloney K.A., Rings, circles, and null-models for point pattern analysis in ecology, Oikos, 2004, Vol. 104, No. 2, pp. 209–229.
  35. Yaroslavtsev S.V., Kharakteristika estestvennogo vozobnovleniya v pritundrovykh el'nikakh Evropeiskogo Severa (Characteristics of natural regeneration in tundra spruce forests of the European North), Sovremennye problemy pritundrovykh lesov (Modern problems of sub-tundra forests), Arkhangelsk, Proc. of the All-Russian Conf. with international participation, Arkhangelsk: SAFU im. M.V. Lomonosova, pp. 284–288.
  36. Yaroslavtsev S.V., Osobennosti stroeniya el'nikov Krainego Severa (Features of the structure of spruce forests in the Far North), Lesnoi zhurnal, 1992, No. 4, pp. 29–32.
  37. Yaroslavtsev S.V., Vozrastnoe stroenie el'nikov Krainego Severa (Age structure of spruce forests of the Far North), Lesnoi zhurnal, 1986, No. 3, pp. 9–13.
  38. Yaroslavtsev S.V., Zakonomernosti stroeniya i normativy taksatsii el'nikov Krainego Severa. Avtoref. diss. kandidata s.-kh. nauk: (Patterns of structure and taxation standards of spruce forests in the Far North. Extended abstract of Candidate's agric. sci. thesis), Kiev, 1985, 18 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Clustering diagram of tree distribution series by trunk diameter (a) and undergrowth by height (b) in the PFS.

Download (97KB)
3. Fig. 2. Distribution of the number of trunks (dark columns) and wood stock (light columns) by 20-year age stages in tundra spruce forests: a - grass-green-moss (SPT 6); b - sphagnum (SPT 7); c - cloudberry-sphagnum (SPT 8); d - green-moss (SPT 10); e - shrub-green-moss (SPT 12). Diagram (f) shows the statistics of tree age distribution series in SPTs in ascending order of their numbering.

Download (163KB)
4. Fig. 3. Testing the null hypothesis of randomness of the point process. 1 - empirical pair correlation function ĝ (r); 2 - behaviour of the function g (r) in the case of PPP; 3 - area of acceptance of the PPP hypothesis obtained using 999 generations of the homogeneous Poisson process for: a-d - all tree species; e-l - spruce trees; m-c - all undergrowth species; t-ts - spruce undergrowth. Here and in the following figure the columns are labelled as follows: I - grass-green-moss spruce forest (SPT 6); II - sphagnum spruce forest (SPT 7); III - cloudberry-sphagnum spruce forest (SPT 8); IV - green-moss spruce forest (SPT 10); V - shrub-green-moss spruce forest (SPT 12).

Download (246KB)
5. Fig. 4. Testing the null hypothesis about the randomness of point process labelling. 1 - empirical cross-correlation function ĝij (r); 2 - behaviour of the function gij (r) in the case of PPP; 3 - area of acceptance of the PPP hypothesis obtained using 999 generations of a homogeneous Poisson process for each pair of woody plant categories: a-d - trees/growth of all species; e-l - trees/growth of spruce.

Download (155KB)
6. Fig. 5. Distribution of the coefficients of space filling by tree crowns in tundra spruce forests: a - grass-green-moss (PPP 6); b - sphagnum (PPP 7); c - cloudberry-sphagnum (PPP 8); d - green-moss (PPP 10); e - shrub-green-moss (PPP 12).

Download (132KB)

Copyright (c) 2024 Russian Academy of Sciences