MODELING OF ICE-WATER PHASE TRANSITION IN A PIPE WITH SMALL ICE BUILDUPS ON THE WALL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The mathematical modeling of the ice-water phase transition during fluid flow inside a pipe with a small ice buildup on the wall at high Reynolds numbers is considered. As a mathematical model describing the dynamics of the phase transition, a double-deck boundary layer model and a phase field system are used. The results of numerical simulation are presented.

About the authors

R. K. Gaidukov

National Research University—Higher School of Economics (HSE University)

Email: roma1990@gmail.com
Moscow, 109028 Russia

V. G. Danilov

National Research University—Higher School of Economics (HSE University)

Moscow, 109028 Russia

References

  1. Danilov V. G., Gaydukov R. K. Ice-water phase transition on a substrate // Rus. J. Math. Phys. 2023. V. 30. P. 165–175.
  2. Гайдуков Р. К., Данилов В. Г., Фонарева А. В. Моделирование таяния-намерзания льда в задаче обтекания жидкостью малой неровности // Изв. РАН. Механ. жидкости и газа, в печати, 2023.
  3. Aydın O., Avcı M. Viscous-dissipation effects on the heat transfer in a poiseuille flow, 2006.
  4. Danilov V. G., Gaydukov R. K. Double-deck structure of the boundary layer in the problem of flow in an axially symmetric pipe with small irregularities on the wall for large Reynolds numbers // Rus. J. Math. Phys. 2017. V. 24. P. 1–18.
  5. Meirmanov A. M. The Stefan Problem. De Gruyter, 1992.
  6. Caginalp G. An analysis of a phase field model of a free boundary // Arch. Ration. Mech. Anal. 1986. V. 92. P. 205–245.
  7. Caginalp G. Stefan and hele-shaw type models as asymptotic limits of the phase field equations // Phys. Rev. A. 1989. V. 39. P. 5887–5896.
  8. Медведев Д. А., Ершов А. П. Моделирование намерзания льда на подводной трубе газопровода // Вестн. НГУ. Сер. матем., мех., информ. 2013. Т. 13. С. 96–101.
  9. Gaydukov R. K. Double-deck structure in the fluid flow problem over plate with small irregularities of timedependent shape // Europ. J. Mech. B/Fluid. 2021. V. 89. P. 401–410.
  10. Fonareva A. V., Gaydukov R. K. Nonstationary double-deck structure of boundary layers in compressible flow problem inside a channel with small irregularities on the walls // Rus. J. Math. Phys. 2021. V. 28. P. 224–243.
  11. Fernandez R., Barduhn A. J. The growth rate of ice crystals // Desalinat. 1967. V. 3. P. 330–342.
  12. Plotnikov P. I., Starovoitov V. N. The stefan problem with surface tension as a limit of the phase field model // Differ. Equat. 1993. V. 29. P. 395–404.
  13. Danilov V. G., Omel’yanov G. A., Radkevich E. V. Hugoniot-type conditions and weak solutions to the phasefield system // Europ. J. Appl. Math. 1999. V. 10. P. 55–77.
  14. Danilov V. G., Omel’yanov G. A., Shelkovich V. M. Weak asymptotics method and interaction of nonlinear waves, 2003.
  15. Roache P. J. Computational fluid dynamics. Hermosa Publ., Albuquerque, 1976.
  16. Yapalparvi R. Double-deck structure revisited // Europ. J. Mech. B/Fluid. 2012. V. 31. P. 53–70.
  17. Кикоин И. К. Таблицы физических величин. Справочник. М.: Атомиздат, 1976.
  18. Григорьев И. C., Мейлихов Е. З. Физические величины. Справочник. М.: Энергоатомиздат, 1991.
  19. Кузнецов В. В., Усть-Качкинцев В. Ф. Физическая и коллоидная химия: Уч. пособие. М.: Высш. школа, 1976.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences