RAMSEY’S CONJECTURE OF SOCIAL STRATIFICATION AS FISHER’S SELECTION PRINCIPLE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Ramsey’s conjecture of social stratification states that wealth in a population of households is concentrated among the most frugal agents, who discount consumer spending with the lowest discount factor. Ramsey’s conjecture can be viewed as stating that Fisher’s principle of natural selection holds in a population of households. In this paper, based on Duesenberry’s hypothesis, discount factors are formed depending on the capital distribution among the agents. The behavior of households is described by Ramsey-type models of a rational representative consumer. For the corresponding optimal control problems, we construct solutions in the form of synthesis, which are used to model the dynamics of a household population. Theorems for a household population are proved that justify the validity of Ramsey’s conjecture. The influence of consumer loans on the social stratification of households is studied.

Sobre autores

G. Parastaev

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University; Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences

Email: parastaew1996@yandex.ru
Moscow, 119991 Russia; Moscow, 119333 Russia

A. Shananin

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University; Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); Moscow Center for Fundamental and Applied Mathematics; Peoples’ Friendship University of Russia (RUDN University)

Email: alexshan@yandex.ru
Moscow, 119991 Russia; Moscow, 119333 Russia; Moscow oblast, 141701 Russia; Moscow, 119991 Russia; Moscow, 117198 Russia

Bibliografia

  1. Piketty T. Capital in the Twenty-First Century. Cambridge: The Belknap Press of Harvard University Press, 2014.
  2. Aghion P., Williamson J. G. Growth, Inequality and Globalization: Theory, History and Policy. Cambridge: Cambridge University Press, 1999.
  3. Atkinson A. B. Inequality: What Can Be Done? Cambridge: Harvard University Press, 2015.
  4. Ramsey F. P. A Mathematical Theory of Saving // Econ. J. 1928. V. 38. № 152. P. 543–559.
  5. Acemoglu D. Introduction to Modern Economic Growth. Princeton: Princeton University Press, 2009.
  6. Becker R. A. Equilibrium Dynamics with Many Agents. In: Dana R.-A., Le Van C., Mitra T., Nishimura K. Handbook on Optimal Growth 1: Discrete Time. Berlin: Springer, 2006. P. 385–442.
  7. Борисов К. Ю., Пахнин М. А. Модели экономического роста с неоднородным дисконтированием // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 3. С. 355–379.
  8. Becker R. A. On the Long-run Steady State in a Simple Dynamic Model of Equilibrium with Heterogeneous Households // Q. J. Econ. 1980. V. 95. № 2. P. 375–382.
  9. Bewley T. F. An integration of equilibrium theory and turnpike theory // J. Math. Econ. 1982. V. 10. P. 233–267.
  10. Mitra T., Sorger G. On Ramsey’s conjecture // J. Econ. Theory. 2013. V. 148. № 5. P. 1953–1976.
  11. Koopmans T. C. Stationary Ordinal Utility and Impatience // Econometrica. 1960. V. 28. № 2. P. 287–309.
  12. Uzawa H. Time Preference, the Consumption Function, and Optimal Asset Holdings. In: Wolfe J. N. (ed.) Value, Capital and Growth: Papers in Honour of Sir John Hicks. Chicago: Aldine Publishing Company, 1968. P. 485–505.
  13. Borissov K. Growth and Distribution in a Model with Endogeneous Time Preferences and Borrowing Constraints // Math. Soc. Sci. 2013. V. 66. № 2. P. 117–128.
  14. Borissov K., Lambrecht S. Growth and Distribution in an AK-model with Endogeneous Impatience // Econ. Theory. 2009. V. 39. № 1. P. 93–112.
  15. Duesenberry J. S. Income, Saving and the Theory of Consumer Behavior. Cambridge: Harvard University Press, 1949.
  16. Keynes J. M. The General Theory of Employment, Interest and Money. London: Macmillan, 1936.
  17. Frank R. H. Falling Behind: How Rising Inequality Harms the Middle Class. Berkeley: University of California Press, 2007.
  18. Schlicht E. A Neoclassical Theory of Wealth Distribution // Jahrb. Natl. Stat. 1975. V. 189. P. 78–96.
  19. Bourguignon F. Pareto Superiority of Unegalitarian Equilibria in Stiglitz’ Model of Wealth Distribution with Convex Saving Function // Econometrica. 1981. V. 49. P. 1469–1475.
  20. Borissov K. The Rich and the Poor in a Simple Model of Growth and Distribution // Macroecon. Dyn. 2016. V. 20. № 7. P. 1934–1952.
  21. Fisher R. A. The Genetical Theory of Natural Selection. Oxford: Clarendon Press, 1930.
  22. Асеев С. М., Кряжимский А. В. Принцип максимума Понтрягина и задачи оптимального экономического роста // Тр. МИАН. 2007. Т. 257. С. 3–271.
  23. Асеев С. М., Бесов К. О., Кряжимский А. В. Задачи оптимального управления на бесконечном интервале времени в экономике // Успехи матем. наук. 2012. Т. 67. Вып. 2 (404). С. 3–64.
  24. Carlson D. A., Haurie A. B., Leizarowitz A. Infinite Horizon Optimal Control: Deterministic and Stochastic Systems. Berlin: Springer-Verlag, 1991.
  25. Seierstad A., Syds ter K. Optimal Control Theory with Economic Applications. Amsterdam: North-Holland, 1987.
  26. Fleming W. H., Soner H. M. Controlled Markov Processes and Viscosity Solutions. New York: Springer, 2006.
  27. Тихонов А. Н., Васильева А. Б., Свешников А. Г. Дифференциальные уравнения. М.: Физматлит, 2005. 256 с.
  28. Marshall A. W., Olkin I., Arnold B. C. Inequalities: Theory of Majorization and Its Applications. Second Edition. New York: Springer, 2011.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024