Взаимодействие аффективных и когнитивных компонентов рабочей памяти при удержании эмоционально окрашенной информации. Нейрокогнитивный анализ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В обзоре представлен анализ современных психологических теорий эмоций и соответствующих им концепций нейронального обеспечения обработки и удержания в рабочей памяти эмоционально окрашенной информации. Общей тенденцией современных нейрокогнитивных исследований является отказ от локализации отдельных когнитивных функций в пользу сетевых моделей, в которых обеспечение психических процессов осуществляется распределенными сетями, объединяющими функционально специфичные структуры коры и глубинных образований. Такие сети способны перестраиваться в соответствии с требованиями текущей задачи деятельности. В работе проанализированы подходы к анализу взаимодействия эмоций и когнитивных процессов, в рамках которых они могут рассматриваться и как конкурирующие системы, и как компоненты единого механизма целенаправленного поведения, в частности при удержании эмоционально окрашенной информации в аффективной рабочей памяти. Обсуждается связь мозговой организации аффективной рабочей памяти с динамическим взаимодействием крупных морфофункциональных сетей покоя (resting state networks), включая сеть определения значимых событий, дефолтную сеть и фронто-париетальную сеть, с возможностью перестройки и подключения дополнительных узлов, например, связанных с обработкой социально значимой информации.

Полный текст

Доступ закрыт

Об авторах

Е. В. Кочеткова

Институт развития, здоровья и адаптации ребенка; Центральный экономико-математический институт Российской академии наук

Автор, ответственный за переписку.
Email: k.v.kochetkova@gmail.com
Россия, Москва; Москва

Р. И. Мачинская

Институт развития, здоровья и адаптации ребенка; Российская академия народного хозяйства и государственной службы при Президенте РФ

Email: k.v.kochetkova@gmail.com
Россия, Москва; Москва

Список литературы

  1. Астащенко А.П., Якимова Е Г., Дорохов Е В. Изменения фронтальной функциональной асимметрии головного мозга в процессах смещения внимания к эмоциональным стимулам. Вестник ВолГМУ. 2019. 4(72): 49–52.
  2. Люсин Д.В. Трехмерная модель структуры эмоциональных состояний, основанная на русскоязычных данных. Психология. Журнал Высшей школы экономики. 2019. 16 (2): 341–356.
  3. Мачинская Р.И. Управляющие системы мозга. Журн. высш. нерв. деят. им. И.П. Павлова. 2015. 65: 33–60.
  4. Овсянникова В.В. К вопросу о классификации эмоций: категориальный и многомерный подходы. Вопросы экономики. 2013. 37: 43–48.
  5. Розовская Р.И., Мачинская Р. И., Печенкова Е. В. Влияние эмоциональной окраски изображений на зрительную рабочую память у взрослых и подростков. Физиология человека. 2016. 42(1): 82–93.
  6. Силькис И.Г. Механизмы функционирования коннектома, включающего неокортекс, гиппокамп, базальные ганглии, мозжечок и таламус. Журнал высшей нервной деятельности им И П Павлова. 2022. 72(1): 36–54.
  7. Сучкова Е.А. Обновление аффективно окрашенной информации в рабочей памяти: Роль эмоционального состояния. Российский Журнал Когнитивной Науки. 2018. 5(2): 45–56.
  8. Absatova K.A., Kurgansky A.V., Machinskaya R.I. The recall modality affects the source-space effective connectivity in the θ-band during the retention of visual information. Psychol. Neurosci. 2016. 9: 344–361.
  9. Adolfi F., Couto B., Richter F., Decety J., Lopez J., Sigman M., Manes F., Ibáñez A. Convergence of interoception, emotion, and social cognition: A twofold fMRI meta-analysis and lesion approach. Cortex. 2017. 88: 124–142.
  10. Adolphs R. How should neuroscience study emotions? by distinguishing emotion states, concepts, and experiences. Soc. Cogn. Affect. Neurosci. 2017. 12: 24–31.
  11. Ahumada-Méndez F., Lucero B., Avenanti A., Saracini C., Muñoz-Quezada M.T., Cortés-Rivera C., Canales-Johnson A. Affective modulation of cognitive control: A systematic review of EEG studies. Physiology & Behavior. 2022. 249: 113743.
  12. Alexandrov Y. I., Sams M. E. Emotion and consciousness: Ends of a continuum. Cogn. Brain Res. 2005. 25: 387–405.
  13. Amft M., Bzdok D., Laird A.R., Fox P.T., Schilbach L., Eickhoff S.B. Definition and characterization of an extended social-affective default network. Brain Struct. Funct. 2015. 220: 1031–1049.
  14. Amodio D.M., Frith C.D. Meeting of minds: the medial frontal cortex and social cognition. 2006. Nat. Rev. Neurosci. 7: 268–277.
  15. Armony J. Current Emotion Research in Behavioral Neuroscience: The Role(s) of the Amygdala. Emotion Review. 2013. 5: 104–115.
  16. Atzil S., Satpute A.B., Zhang J., Parrish M.H., Shablack H., MacCormack J.K., Leshin J., Goel S., Brooks J.A., Kang J., Xu Y., Cohen M., Lindquist K.A. The impact of sociality and affective valence on brain activation: A meta-analysis. NeuroImage. 2023. 268: 119879.
  17. Baars B.J. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in Brain Research. 2005. 150: 45–53.
  18. Baddeley A.D., Hitch G.J. & Allen R.J. From short-term store to multicomponent working memory: The role of the modal model. Mem. Cognit. 2019. 47: 575–588.
  19. Barbey A.K., Koenigs M., Grafman J. Orbitofrontal Contributions to Human Working Memory. Cereb. Cortex. 2011. 21: 789–795.
  20. Barrett L.F., Bliss-Moreau E. Affect as a Psychological Primitive. Adv. Exp. Soc. Psychol. 2009. 41: 167–218.
  21. Barrett L.F., Satpute A.B. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr. Opin. Neurobiol. 2013. 23: 361–372.
  22. Barrett L.F., Wager T.D. The Structure of Emotion: Evidence From Neuroimaging Studies. Curr. Dir. Psychol. Sci. 2006. 15: 79–83.
  23. Barrett L. F. The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 2017. 12: 1–23.
  24. Bekhtereva V., Craddock M., Müller M. M. Attentional bias to affective faces and complex IAPS images in early visual cortex follows emotional cue extraction. NeuroImage. 2015. 112: 254–266.
  25. Berridge K. C. Affective valence in the brain: modules or modes? Nat. Rev. Neurosci. 2019. 20: 225–234.
  26. Brand M., Markowitsch H. J. Memory processes and the orbitofrontal cortex. The Orbitofrontal Cortex (eds. Zald, D., Rauch, S.). 2006. Pp. 285–306.
  27. https://doi.org/10.1093/acprof:oso/ 9780198565741.003.0011
  28. Cacioppo J.T. Feelings and emotions: roles for electrophysiological markers. Biological Psychology. 2004. 67(1–2): 235–243.
  29. Caillaud M., Bejanin A., Laisney M., Gagnepain P., Gaubert ., Viard A., Clochon P., de La Sayette V., Allain P., Eustache F., Desgranges B. Influence of emotional complexity on the neural substrates of affective theory of mind. Hum. Brain Mapp. 2020. 41: 139–149.
  30. Celeghin A., Diano M., Bagnis A., Viola M., Tamietto M. Basic Emotions in Human Neuroscience: Neuroimaging and Beyond. Front. Psychol. 2017. 8: 1432.
  31. Chen T., Becker B., Camilleri J., Wang L., Yu S., Eickhoff S.B., Feng C. A domain-general brain network underlying emotional and cognitive interference processing: evidence from coordinate-based and functional connectivity meta-analyses. Brain Struct. Funct. 2018. 223: 3813–3840.
  32. Christophel T.B., Klink P.C., Spitzer B., Roelfsema P.R., Haynes J.-D. The Distributed Nature of Working Memory. Trends Cogn. Sci. 2017. 21: 111–124.
  33. Coley A.A., Padilla-Coreano N., Patel R., Tye K.M. Valence processing in the PFC: Reconciling circuit-level and systems-level views. Ch.7 in International Review of Neurobiology (eds. Brockett A. T., Amarante L. M., Laubach M., Roesch M. R.). 2021. 158: 171–212.
  34. Corbetta M., Shulman G. L. Spatial neglect and attention networks. Annu. Rev. Neurosci. 2011. 34: 569–599.
  35. Costa T., Cauda F., Crini M., Tatu M.K., Celeghin A., De Gelder B., Tamietto M. Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes. Soc. Cogn. Affect. Neurosci. 2014. 9: 1690–1703.
  36. Cromheeke S., Mueller S.C. Probing emotional influences on cognitive control: an ALE meta-analysis of cognition emotion interactions. Brain Struct. Funct. 2014. 219: 995–1008.
  37. Cui G., Li X., Touyama H. Emotion recognition based on group phase locking value using convolutional neural network. Sci Rep. 2023. 13: 3769.
  38. D’Esposito M., Detre J., Alsop D., Shin R., Atlas S., Grossman M. The neural basis of the central executive system of working memory. Nature. 1995. 378: 279–281.
  39. Dehaene S., Changeux J.-P., Naccache L. The global neuronal workspace model of conscious access: From neuronal architectures to clinical applications. In Characterizing Consciousness: From Cognition to the Clinic? (eds. S. Dehaene & Y. Christen). 2011. Pp. 55–84.
  40. Dixon M.L., Thiruchselvam R., Todd R., Christoff K. Emotion and the prefrontal cortex: An integrative review. Psychol. Bull. 2017. 143: 1033–1081.
  41. Dolan R.J, Vuilleumier P. Amygdala automaticity in emotional processing. Ann N Y Acad Sci. 2003. 985: 348–55.
  42. Dolcos F., Denkova E. Dissociating Enhancing and Impairing Effects of Emotion on Cognition. Emerging Trends in the Social and Behavioral Sciences (eds. Scott, R. A. & Kosslyn, S. M.). 2015. Pp. 1–18. https://doi.org/10.1002/9781118900772.etrds0079
  43. Dolcos F., Katsumi Y., Moore M., Berggren N., de Gelder B., Derakshan N., Hamm A.O., Koster E.H.W., Ladouceur C.D., Okon-Singer H., Pegna A.J., Richter T., Schweizer S., Van den Stock J., Ventura-Bort C., Weymar M., Dolcos S. Neural correlates of emotion-attention interactions: From perception, learning, and memory to social cognition, individual differences, and training interventions. Neurosci. Biobehav. Rev. 2020. 108: 559–601.
  44. Dolcos F., Diaz-Granados P., Wang L., McCarthy G. Opposing influences of emotional and non-emotional distracters upon sustained prefrontal cortex activity during a delayed-response working memory task. Neuropsychologia. 2008. 46: 326–335.
  45. Dolcos F., Katsumi Y., Denkova E., Dolcos S. Factors Influencing Opposing Effects of Emotion on Cognition: A Review of Evidence from Research on Perception and Memory. in The Physics of the Mind and Brain Disorders (eds. Opris, I. & Casanova, M. F.). 2017. 11: 297–341.
  46. Dolcos F., Katsumi Y., Denkova E., Weymar M., Dolcos S. Current Issues and Emerging Directions in the Impact of Emotion on Memory: A Review of Evidence from Brain Imaging Investigations. in Memory in a Social Context (eds. Tsukiura, T. & Umeda, S.). 2017. Pp. 57–101.
  47. Etkin A., Büchel C., Gross J. J. The neural bases of emotion regulation. Nat. Rev. Neurosci. 2015. 16: 693–700.
  48. Floresco S. The nucleus accumbens: an interface between cognition, emotion, and action. Annual review of psychology. 2015. 66: 25–52.
  49. Frank C. C., Iordan A. D., Ballouz T. L., Mikels J. A., Reuter-Lorenz P. A. Affective forecasting: A selective relationship with working memory for emotion. J. Exp. Psychol. Gen. 2021. 150: 67–82.
  50. Frank D.W., Dewitt M., Hudgens-Haney M., Schaeffer D.J., Ball B.H., Schwarz N.F., Hussein A.A., Smart L.M., Sabatinelli D. Emotion regulation: quantitative meta-analysis of functional activation and deactivation. Neurosci. Biobehav. Rev. 2014. 45: 202–211.
  51. Friedman N.P., Robbins T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022. 47: 72–89.
  52. Gazzaley A., Rissman J., D’Esposito M. Functional connectivity during working memory maintenance. Cogn. Affect. Behav. Neurosci. 2004. 4: 580–599.
  53. Geng H., Xu P., Aleman A., Qin, S., Luo Y.-J. Dynamic Organization of Large-scale Functional Brain Networks Supports Interactions Between Emotion and Executive Control. Neurosci. Bull. 2024.
  54. https://doi.org/10.1007/s12264-023-01168-w
  55. Goulden N., Khusnulina A., Davis N.J., Bracewell R.M., Bokde A.L., McNulty J.P., Mullins P.G. The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage. 2014. 99: 180–190.
  56. Gray J.R., Braver T.S., Raichle M.E. Integration of emotion and cognition in the lateral prefrontal cortex. Proc. Natl. Acad. Sci. 2002. 99: 4115–4120.
  57. Grimshaw G.M., Foster J.J., Corballis P.M. Frontal and parietal EEG asymmetries interact to predict attentional bias to threat. Brain Cogn. 2014. 90: 76–86.
  58. Grimshaw G.M., Kranz L.S., Carmel D., Moody R.E., Devue C. Contrasting reactive and proactive control of emotional distraction. Emotion. 2018. 18: 26–38.
  59. Grissmann S., Faller J., Scharinger C., Spüler M., Gerjets P. Electroencephalography Based Analysis of Working Memory Load and Affective Valence in an N-back Task with Emotional Stimuli. Front Hum Neurosci. 2017. 11: 616.
  60. Grootswagers T., Kennedy B.L., Most S.B., Carlson T.A. Neural signatures of dynamic emotion constructs in the human brain. Neuropsychologia. 2020. 145: 106535.
  61. Gu X., Hof P.R., Friston K.J., Fan J. Anterior insular cortex and emotional awareness. J. Comp. Neurol. 2013. 521: 3371–3388.
  62. Gündem D., Potočnik J., De Winter F.L., El Kaddouri A., Stam D., Peeters R., Emsell L., Sunaert S., Van Oudenhove L., Vandenbulcke M., Feldman Barrett L., Van den Stock J. The neurobiological basis of affect is consistent with psychological construction theory and shares a common neural basis across emotional categories. Commun. Biol. 2022. 5: 1–12.
  63. Gupta R., Raymond J.E., Vuilleumier P. Priming by motivationally salient distractors produces hemispheric asymmetries in visual processing. Psychol. Res. 2019. 83: 1798–1807.
  64. Haller J. The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches. Neuroscience & Biobehavioral Reviews. 2018. 85: 34–43.
  65. Hamann S., Pessoa L., Wager T.D. Neuropsychologia special issue editorial: The neural basis of emotion. Neuropsychologia. 2020. 145: 107507.
  66. Harris L.T., McClure S.M., van den Bos W., Cohen J.D., Fiske S.T. Regions of the MPFC differentially tuned to social and nonsocial affective evaluation. Cogn. Affect. Behav. Neurosci. 2007. 7: 309–316.
  67. Heine L., Soddu A., Gómez F., Vanhaudenhuyse A., Tshibanda L., Thonnard M., Charland-Verville V., Kirsch M., Laureys S., Demertzi A. Resting state networks and consciousness. Alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness states. Front. Psychology. 2012. 3: 295.
  68. Hendricks M.A., Buchanan T.W. Individual differences in cognitive control processes and their relationship to emotion regulation. Cogn. Emot. 30: 912–924.
  69. Hiser J., Koenigs M. The Multifaceted Role of the Ventromedial Prefrontal Cortex in Emotion, Decision Making, Social Cognition, and Psychopathology. Biol. Psychiatry. 2018. 83: 638–647.
  70. Hong CC.-H., Fallon J.H., Friston K.J. fMRI Evidence for Default Mode Network Deactivation Associated with Rapid Eye Movements in Sleep. Brain Sciences. 2021. 11(11): 1528.
  71. Hur J., Iordan A.D., Dolcos F., Berenbaum H. Emotional influences on perception and working memory. Cogn. Emot. 2017. 31: 1294–1302.
  72. Jacques C., Jonas J., Maillard L., Colnat-Coulbois S., Koessler L., Rossion B. The inferior occipital gyrus is a major cortical source of the face-evoked N170: Evidence from simultaneous scalp and intracerebral human recordings. Hum. Brain Mapp. 2019. 40: 1403.
  73. Jonides J., Lacey S.C., Nee D.E. Processes of Working Memory in Mind and Brain. Curr. Dir. Psychol. Sci. 2005. 14: 2–5.
  74. Kardosh N., Waugh C.E., Mikels J.A., Mor N. Simultaneous maintenance of emotions in affective working memory. Cogn. Emot. 2024. 38(4): 624–634.
  75. Keha E., Naftalovich H., Shahaf A., Kalanthroff E. Control your emotions: evidence for a shared mechanism of cognitive and emotional control. Cogn. Emot. 2024. 0: 1–13.
  76. Kelly A.M.C., Uddin L.Q., Biswal B.B., Castellanos F.X., Milham M.P. Competition between functional brain networks mediates behavioral variability. NeuroImage. 2008. 39: 527–537.
  77. Kensinger E.A., Corkin S. Effect of Negative Emotional Content on Working Memory and Long-Term Memory. Emotion. 2003. 3: 378–393.
  78. Keshmiri S., Shiomi M., Ishiguro H. Emergence of the Affect from the Variation in the Whole-Brain Flow of Information. Brain Sciences. 2020. 10(1): 8.
  79. Kober H., Barrett L.F., Joseph J., Bliss-Moreau E., Lindquist K., Wager T.D. Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. NeuroImage. 2008. 42: 998–1031.
  80. Kohn N., Eickhoff S.B., Scheller M., Laird A.R., Fox P.T., Habel U. Neural network of cognitive emotion regulation — An ALE meta-analysis and MACM analysis. NeuroImage. 2014. 87: 345–355.
  81. LeDoux J. E. Emotion circuits in the brain. Annu Rev Neurosci. 2000. 23: 155–84.
  82. LeDoux J.E. The Amygdala. Current Biology. 17(20): 868–874.
  83. LeDoux J.E., Brown R. A higher-order theory of emotional consciousness. Proc. Natl. Acad. Sci. U. S. A. 2017. 114: E2016–E2025.
  84. Lee T.-W., Xue S.-W. Does emotion regulation engage the same neural circuit as working memory? A meta-analytical comparison between cognitive reappraisal of negative emotion and 2-back working memory task. PloS One. 2018. 13: e0203753.
  85. Lench H.C., Flores S.A., Bench S.W. Discrete emotions predict changes in cognition, judgment, experience, behavior, and physiology: a meta-analysis of experimental emotion elicitations. Psychol. Bull. 2011. 137: 834–855.
  86. Levens S.M., Phelps E.A. Insula and Orbital Frontal Cortex Activity Underlying Emotion Interference Resolution in Working Memory. J. Cogn. Neurosci. 2010. 22: 2790–2803.
  87. Li W., Mai X., Liu C. The default mode network and social understanding of others: What do brain connectivity studies tell us. Frontiers in Human Neuroscience. 2014. 8:74.
  88. Lindquist K.A., Satpute A.B., Wager T.D., Weber J., Barrett L.F. The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature. Cereb. Cortex. 2016. 26: 1910–1922.
  89. Lindquist K.A., Siegel E.H., Quigley K. S., Barrett L. F. The Hundred-Year Emotion War: Are Emotions Natural Kinds or Psychological Constructions? Comment on. Psychol. Bull. 2013. 139: 255–263.
  90. Lindquist K.A., Wager T.D., Bliss-Moreau E., Kober H., Barrett L. F. What are emotions and how are they created in the brain? Behav. Brain Sci. 2012. 35: 172–202.
  91. Lindquist K.A., Wager T.D., Kober H., Bliss-Moreau E., Barrett L. F. The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 2012. 35: 121–143.
  92. Liu X., Hairston J., Schrier M., Fan J. Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 2011. 35: 1219–1236.
  93. Llorens A., Funderud I., Blenkmann A.O., Lubell J., Foldal M., Leske S., Huster R., Meling T.R., Knight R.T., Solbakk A.K., Endestad T. Preservation of Interference Effects in Working Memory After Orbitofrontal Damage. Front. Hum. Neurosci. 2020. 13: 445.
  94. Lobo R., Bottenhorn K.L., Riedel M.C., Toma A.I., Hare M.M., Smith D.D., Moor A.C., Cowan I.K., Valdes J.A., Bartley J.E., Salo T., Boeving E.R., Pankey B., Sutherland M.T., Musser E.D., Laird A.R. Neural systems underlying RDoC social constructs: An activation likelihood estimation meta-analysis. Neurosci Biobehav Rev. 2023. 144:104971.
  95. Logie R., Camos V., Cowan N. (eds). Working Memory: The state of the science. Oxford Academic. 2020.
  96. https://doi.org/10.1093/oso/9780198842286.001.0001
  97. Longe O., Senior C., Rippon G. The lateral and ventromedial prefrontal cortex work as a dynamic integrated system: evidence from FMRI connectivity analysis. J. Cogn. Neurosci. 2009. 21: 141–154.
  98. Mancuso L., Cavuoti-Cabanillas S., Liloia D., Manuello J., Buzi G., Cauda F., Costa T. Tasks activating the default mode network map multiple functional systems. Brain Struct. Funct. 2022. 227: 1711–1734.
  99. Markett S., Wudarczyk O.A., Biswal B.B., Jawinski P., Montag C. Affective Network Neuroscience. Front. Neurosci. 2018. 12: 895.
  100. Martini N., Menicucci D., Sebastiani L., Bedini R., Pingitore A., Vanello N., Milanesi M., Landini L., Gemignani A. The dynamics of EEG gamma responses to unpleasant visual stimuli: From local activity to functional connectivity. NeuroImage. 2012. 60(2): 922–932.
  101. Medford N., Critchley H.D. Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct. Funct. 2010. 214: 535–549.
  102. Menon V., D’Esposito M. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology. 2022. 47: 90–103.
  103. Menon V., Uddin L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 2010. 214: 655–667.
  104. Meyer M.L., Taylor S.E., Lieberman M.D. Social working memory and its distinctive link to social cognitive ability: an fMRI study. Soc. Cogn. Affect. Neurosci. 2015. 10: 1338–1347.
  105. Mielke M., Reisch L.M., Mehlmann A., Schindler S., Bien C.G., Kissler J. Right medial temporal lobe structures particularly impact early stages of affective picture processing. Hum. Brain Mapp. 2021. 43: 787–798.
  106. Mikels J.A., Reuter-Lorenz P.A. Affective Working Memory: An Integrative Psychological Construct. Perspect. Psychol. Sci. 2019. 14: 543–559.
  107. Mikels J.A., Reuter-Lorenz P.A., Beyer J.A., Fredrickson B.L. Emotion and working memory: evidence for domain-specific processes for affective maintenance. Emotion. 2008. 8(2): 256–266.
  108. Mohammadi G., Van De Ville D., Vuilleumier P. Brain networks subserving functional core processes of emotions identified with componential modeling. Cereb. Cortex. 2023. 33: 7993–8010.
  109. Mohammed A.R., Lyusin D. The effect of an induced negative mood on the updating of affective information. Cogn Process. 2022. 23: 91–98.
  110. Molnar-Szakacs I., Uddin L.Q. Anterior insula as a gatekeeper of executive control. Neuroscience & Biobehavioral Reviews. 2022. 139: 104736.
  111. Molnar-Szakacs I., Uddin L. Self-Processing and the Default Mode Network: Interactions with the Mirror Neuron System. Front. Hum. Neurosci. 2013. 7: 571.
  112. Morawetz C., Riedel M.C., Salo T., Berboth S., Eickhoff S.B., Laird A.R., Kohn N. Multiple large-scale neural networks underlying emotion regulation. Neurosci. Biobehav. Rev. 2020. 116: 382–395.
  113. Murphy A.C., Bertolero M.A., Papadopoulos L., Lydon-Staley D.M., Bassett D.S. Multimodal network dynamics underpinning working memory. Nat. Commun. 2020. 11: 3035.
  114. Murphy F.C., Nimmo-Smith I., Lawrence A.D. Functional neuroanatomy of emotions: a meta-analysis. Cogn. Affect. Behav. Neurosci. 2003. 3: 207–233.
  115. Nee D.E., D’Esposito M. The Representational Basis of Working Memory. Curr. Top. Behav. Neurosci. 2018. 37: 213–230.
  116. Nee D.E., Wager T.D., Jonides J. Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cogn. Affect. Behav. Neurosci. 2007. 7: 1–17.
  117. Neumann M.F., Viska C.G., van Huis S., Palermo R. Similar distraction, but differential suppression, for faces and non-face objects: Evidence from behaviour and event-related potentials. Biol. Psychol. 2018. 139: 39–46.
  118. Niedenthal P., Ric F. Psychology of emotion : interpersonal, experiential, and cognitive approaches. Second Edition. New York: Routledge, 2017.
  119. Okon-Singer H., Hendler T., Pessoa L., Shackman A.J. The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research. Front. Hum. Neurosci. 2015. 9: 58.
  120. Pacios J., Caperos J.M., Del Río D., Maestú F. Emotional distraction in working memory: Bayesian-based evidence of the equivalent effect of positive and neutral interference. Cogn. Emot. 2021. 35: 282–290.
  121. Padilla-Coreano N., Tye K. M., Zelikowsky M. Dynamic influences on the neural encoding of social valence. Nat. Rev. Neurosci. 2022. 23: 535–550.
  122. Panksepp J., Lane R.D., Solms M., Smith R. Reconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experience. Neurosci. Biobehav. Rev. 2017. 76: 187–215.
  123. Pérez-Edgar K., Kujawa A., Nelson S.K., Cole C., Zapp D.J. The relation between electroencephalogram asymmetry and attention biases to threat at baseline and under stress. Brain and Cognition. 2013. 82(3): 337–343.
  124. Perlstein W.M., Elbert T., Stenger V.A. Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proc. Natl. Acad. Sci. 2002. 99: 1736–1741.
  125. Pessoa L. A Network Model of the Emotional Brain. Trends Cogn. Sci. 2017. 21: 357–371.
  126. Pessoa L. Emergent processes in cognitive-emotional interactions. Dialogues Clin. Neurosci. 2010. 12: 433–448.
  127. Pessoa L. Neural dynamics of emotion and cognition: From trajectories to underlying neural geometry. Neural Netw. Off. J. Int. Neural Netw. Soc. 2019. 120: 158–166.
  128. Plutchik R. Integration, Differentiation, and Derivatives of Emotion. Evolution and Cognition. 2001. 7(2): 114–125.
  129. Posner J., Russell J.A., Peterson B.S. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev Psychopathol. 2005. 17(3): 715–734.
  130. Postle B.R. Working memory as an emergent property of the mind and brain. Neuroscience. 2006. 139: 23–38.
  131. Pourtois G., Schettino A., Vuilleumier P. Brain mechanisms for emotional influences on perception and attention: what is magic and what is not. Biol. Psychol. 2013. 92: 492–512.
  132. Pruessner L., Barnow S., Holt D. V., Joormann J., Schulze K. A cognitive control framework for understanding emotion regulation flexibility. Emotion. 2020. 20: 21–29.
  133. Reyna V.F., Brainerd C.J. Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model. Developmental review. 2011. 31(2–3): 180–206.
  134. https://doi.org/10.1016/j.dr.2011.07.004
  135. Riggall A.C., Postle B.R. The Relationship between Working Memory Storage and Elevated Activity as Measured with Functional Magnetic Resonance Imaging. J. Neurosci. 2012. 32: 12990–12998.
  136. Rolls E.T., Deco G., Huang C.-C., Feng J. The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: emotion, memory, and action. Cereb. Cortex. 2022. 33: 330–356.
  137. Rubin D.C., Talarico J.M. A comparison of dimensional models of emotion: evidence from emotions, prototypical events, autobiographical memories, and words. Memory. 2009. 17(8): 802–8.
  138. Russell J.A., Barrett L.F. Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 1999. 76(5): 805–819.
  139. Saarimäki H., Ejtehadian L.F., Glerean E., Jääskeläinen I.P., Vuilleumier P., Sams M., Nummenmaa L. Distributed affective space represents multiple emotion categories across the human brain. Social Cognitive and Affective Neuroscience, 2018. 13(5): 471–482.
  140. Satpute A.B., Kragel P.A., Barrett L.F., Wager T.D., Bianciardi M. Deconstructing arousal into wakeful, autonomic and affective varieties. Neurosci. Lett. 2019. 693: 19–28.
  141. Scherer K.R. The dynamic architecture of emotion: Evidence for the component process model. Cogn. Emot. 2009. 23: 1307–1351.
  142. Schimmelpfennig J., Topczewski J., Zajkowski W., Jankowiak-Siuda K. The role of the salience network in cognitive and affective deficits. Front. Hum. Neurosci. 2023. 17: 1133367.
  143. Schneider D., Göddertz A., Haase H., Hickey C., Wascher E. Hemispheric asymmetries in EEG alpha oscillations indicate active inhibition during attentional orienting within working memory. Behavioural Brain Research. 2019. 359: 38–46.
  144. Schreiter M.L., Chmielewski W.X., Beste C. How socioemotional setting modulates late-stage conflict resolution processes in the lateral prefrontal cortex. Cognitive, Affective, & Behavioral Neuroscience. 2018. 18(3): 521–535.
  145. Schweizer S., Satpute A.B., Atzil S., Field A.P., Hitchcock C., Black M., Barrett L.F., Dalgleish T. The impact of affective information on working memory: A pair of meta-analytic reviews of behavioral and neuroimaging evidence. Psychol. Bull. 2019. 145: 566–609.
  146. Schweizer S., Gotlib I.H., Blakemore S.-J. The role of affective control in emotion regulation during adolescence. Emotion. 2020. 20: 80–86.
  147. Schweizer S., Hampshire A., Dalgleish T. Extending Brain-Training to the Affective Domain: Increasing Cognitive and Affective Executive Control through Emotional Working Memory Training. PLOS ONE. 2011. 6: e24372.
  148. Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H., Reiss A.L., Greicius M.D. Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. J. Neurosci. 2007. 27: 2349–2356.
  149. Seeley W.W. The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands. J. Neurosci. 2019. 39: 9878–9882.
  150. Sergerie K., Chochol C., Armony J. The role of the amygdala in emotional processing: A quantitative meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews. 2008. 32: 811–830.
  151. Shackman A.J., Salomons T.V., Slagter H.A., Fox A.S., Winter J.J., Davidson R.J. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 2011. 12: 154–167.
  152. Sias A.C., Jafar Y., Goodpaster C.M., Ramírez-Armenta K., Wrenn T.M., Griffin N.K., Patel K., Lamparelli A.C., Sharpe M.J., Wassum K.M. Dopamine projections to the basolateral amygdala drive the encoding of identity-specific reward memories. Nat Neurosci. 2024. 27(4): 728–736.
  153. Smith E.E., Reznik S.J., Stewart J.L., Allen J.J. Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. Int J Psychophysiol. 2017b. 111:98–114.
  154. Smith R., Lane R.D. The neural basis of one’s own conscious and unconscious emotional states. Neurosci. Biobehav. Rev. 2015. 57: 1–29.
  155. Smith R., Lane R.D. Unconscious emotion: A cognitive neuroscientific perspective. Neurosci. Biobehav. Rev. 2016. 69: 216–238.
  156. Smith R., Lane R.D., Alkozei A., Bao J., Smith C., Sanova A., Nettles M., Killgore W.D.S. Maintaining the feelings of others in working memory is associated with activation of the left anterior insula and left frontal-parietal control network. Soc. Cogn. Affect. Neurosci. 2017. 12: 848–860.
  157. Smith R., Lane R.D., Alkozei A., Bao J., Smith C., Sanova A., Nettles M., Killgore W.D.S. The role of medial prefrontal cortex in the working memory maintenance of one’s own emotional responses. Sci. Rep. 2018a. 8: 3460.
  158. Smith R., Fass H., Lane R.D. Role of medial prefrontal cortex in representing one’s own subjective emotional responses: a preliminary study. Conscious. Cogn. 2014. 29: 117–130.
  159. Smith R., Kaszniak A.W., Katsanis J., Lane R.D., Nielsen L. The importance of identifying underlying process abnormalities in alexithymia: Implications of the three-process model and a single case study illustration. Conscious. Cogn. 2019. 68: 33–46.
  160. Smith R., Killgore W.D.S., Lane R.D. The structure of emotional experience and its relation to trait emotional awareness: A theoretical review. Emotion. 2018b. 18: 670–692.
  161. Smith R., Steklis H.D., Steklis N.G., Weihs K.L., Lane R.D. The evolution and development of the uniquely human capacity for emotional awareness: A synthesis of comparative anatomical, cognitive, neurocomputational, and evolutionary psychological perspectives. Biol. Psychol. 2020. 154: 107925.
  162. Spreng R.N., Stevens W.D., Chamberlain J.P., Gilmore A.W., Schacter D.L. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage. 2010. 53: 303–317.
  163. Styliadis C., Ioannides A.A., Bamidis P.D., Papadelis C. Mapping the Spatiotemporal Evolution of Emotional Processing: An MEG Study Across Arousal and Valence Dimensions. Front Hum Neurosci. 2018. 12: 322.
  164. Talalay I.V., Kurgansky A.V., Machinskaya R.I. Alpha-band functional connectivity during cued versus implicit modality-specific anticipatory attention: EEG-source coherence analysis. Psychophysiology. 2018. 55(12): e13269.
  165. Uddin L.Q., Yeo B.T.T., Spreng R.N. Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks. Brain Topogr. 2019. 32: 926–942.
  166. Underwood R., Tolmeijer E., Wibroe J., Peters E., Mason L. Networks underpinning emotion: A systematic review and synthesis of functional and effective connectivity. NeuroImage. 2021. 243: 118486.
  167. Van Dillen L.F., Hofmann W. Room for Feelings: A “Working Memory” Account of Affective Processing. Emot. Rev. 2023. 15: 145–157.
  168. Van Dillen L.F., Heslenfeld D.J., Koole S.L. Tuning down the emotional brain: An fMRI study of the effects of cognitive load on the processing of affective images. NeuroImage. 2009. 45: 1212–1219.
  169. Viviani R. Emotion regulation, attention to emotion, and the ventral attentional network. Front. Hum. Neurosci. 2013. 7: 746.
  170. Vossel S., Geng J.J., Fink G.R. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry. 2014. 20: 150–159.
  171. Wager T.D., Barrett L.F. From affect to control: Functional specialization of the insula in motivation and regulation. bioRxiv 102368. 2017.
  172. https://doi.org/10.1101/102368
  173. Wager T.D., Phan K.L., Liberzon I., Taylor S.F. Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. NeuroImage. 2003. 19: 513–531.
  174. Wallis G., Stokes M., Cousijn H., Woolrich M., Nobre A.C. Frontoparietal and Cingulo-opercular Networks Play Dissociable Roles in Control of Working Memory. J. Cogn. Neurosci. 2015. 27: 2019–2034.
  175. Waugh C.E., Lemus M.G., Gotlib I.H. The role of the medial frontal cortex in the maintenance of emotional states. Soc. Cogn. Affect. Neurosci. 2014. 9: 2001–2009.
  176. Waugh C.E., Shing E.Z., Avery B.M. Temporal dynamics of emotional processing in the brain. Emot. Rev. 2015. 7: 323–329.
  177. Wilson T.D., Gilbert D.T. Affective Forecasting. Advances in Experimental Social Psychology. 2003. 35: 345–411.
  178. Wu T., Wang X., Wu Q., Spagna A., Yang J., Yuan C., Wu Y., Gao Z., Hof P.R., Fan J. Anterior insular cortex is a bottleneck of cognitive control. NeuroImage. 2019. 195: 490–504.
  179. Xin F., Lei X. Competition between frontoparietal control and default networks supports social working memory and empathy. Soc. Cogn. Affect. Neurosci. 2015. 10: 1144–1152.
  180. Zacharia A.A., Kaur S., Sharma R. Altered functional connectivity: A possible reason for reduced performance during visual cognition involving scene incongruence and negative affect. IBRO Neuroscience Reports. 2022. 13: 533–542.
  181. Zamani A., Carhart-Harris R., Christoff K. Prefrontal contributions to the stability and variability of thought and conscious experience. Neuropsychopharmacology. 2022. 47: 329–348.
  182. Zinchenko A., Kim H., Danek A., Müller H.J., Rangelov D. Local feature suppression effect in face and non-face stimuli. Psychol. Res. 2015. 79: 194–205.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025