Contribution of intellectual environment of professional activity and STin2VNTR polymorphism of serotonin transporter gene to EEG activity of aging brain: Loreta study
- 作者: Privodnova E.Y.1,2, Volf N.V.1,2
-
隶属关系:
- Scientific Research Institute of Neurosciences and Medicine
- Novosibirsk State University
- 期: 卷 75, 编号 4 (2025)
- 页面: 462-470
- 栏目: ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ (КОГНИТИВНОЙ) ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА
- URL: https://gynecology.orscience.ru/0044-4677/article/view/687575
- DOI: https://doi.org/10.31857/S0044467725040061
- ID: 687575
如何引用文章
详细
Heterogeneity of mental aging is largely determined by the interaction of environmental and genetic factors. Previously, during analysis of age-related changes in the global power of the background EEG, only in elderly subjects we identified differences that were moderated by the STin2VNTR polymorphism of the serotonin transporter gene and training due to the intellectual load of the professional environment (comparison of scientists, SA, and people not associated with professional scientific activity, NSA). For slow rhythms, the greatest differences were observed between homozygous genotypes, with the lowest power values in elderly NSA in the 10/10 group, and in SA – 12/12. The aim of this study was to determine the spatial pattern of current source density (CSD) underlying the identified power decreases in the 10/10 NSA and 12/12 SA genotypes. The study involved elderly subjects (55–80 years; 66 SA and 76 NSA). Voxel-by-voxel analysis using eLORETA showed no local features of the CSD decrease for the 10/10 NSA genotype compared to 12/12 NSA. Thus, the previously noted decrease in the power of slow rhythms in the 10/10 NSA group may be due to a unidirectional diffuse decrease in different areas of the cerebral cortex. In contrast, in 12/12 SA group compared to 10/10 SA, spatial patterns of CSD decrease were revealed in the delta rhythm frequencies mainly in the precuneus, inferior and superior parietal lobule of the left hemisphere, in the alpha2 and alpha3 rhythm frequencies – in the precuneus and superior parietal lobule of the right hemisphere. The data obtained may indicate an adaptive reorganization of neural networks associated with cognitive training in elderly scientists carrying the 12/12 genotype.
全文:

作者简介
E. Privodnova
Scientific Research Institute of Neurosciences and Medicine; Novosibirsk State University
Email: privodnovaeu@neuronm.ru
俄罗斯联邦, Novosibirsk
N. Volf
Scientific Research Institute of Neurosciences and Medicine; Novosibirsk State University
编辑信件的主要联系方式.
Email: privodnovaeu@neuronm.ru
俄罗斯联邦, Novosibirsk
参考
- Вольф Н.В., Приводнова Е.Ю., Базовкина Д.В. Полиморфизм STin2VNTR гена транспортера серотонина: ассоциации с эффективностью кратковременной памяти у молодых и пожилых испытуемых. Журн. высш. нервн. деят. им. И.П. Павлова 2019. 69 (5): 570–576.
- Вольф Н.В., Приводнова Е.Ю. Ассоциации между полиморфизмом STin2VNTR гена транспортера серотонина и характеристиками внимания при старении зависят от интеллектуальной среды профессиональной деятельности. Журн. высш. нервн. деят. им. И.П. Павлова. 2022. 72(1): 77–86.
- Приводнова Е.Ю., Вольф Н.В. Эффект полиморфизма STin2VNTR гена транспортера серотонина на фоновую ЭЭГ у пожилых испытуемых зависит от интеллектуальной среды профессиональной деятельности. Журн. высш. нервн. деят.им. И.П.Павлова 2024. 74 (4): 57–69.
- Attar E.T. EEG Waves Studying Intensively to Recognize the Human Attention Behavior. 2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). Greater Noida. India. 2023. 1–5 pp.
- Babiloni F., Cincotti F., Carducci F., Rossini P.M., Babiloni C. Spatial enhancement of EEG data by surface Laplacian estimation: The use of magnetic resonance imaging-based head models. Clinical Neurophysiology. 2001. 112: 724–727.
- Cannon R.L., Baldwin D.R., Shaw T.L., Diloreto D.J., Phillips S.M., Scruggs A.M., Riehl T.C. (2012). Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days. Neuroscience letters. 2012. 518(1): 27–31.
- Ciaramelli E., Burianová H., Vallesi A., Cabeza R., Moscovitch M. Functional Interplay Between Posterior Parietal Cortex and Hippocampus During Detection of Memory Targets and Non-targets. Frontiers in neuroscience. 2020. 14: 563768.
- Ciaramelli E., Grady C.L., Moscovitch M. Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia. 2008. 46(7): 1828–1851.
- Clemens B., Emri M., Fekete I., Fekete K. Epileptic diathesis: An EEG-LORETA study. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology. 2023. 145: 54–61.
- Fiskerstrand C.E., Lovejoy E.A., Quinn J.P. An intronic polymorphic domain often associated with susceptibility to affective disorders has allele dependent differential enhancer activity in embryonic stem cells. FEBS letters. 1999. 458 (2): 171–174.
- Gilissen S.R., Arckens L. Posterior parietal cortex contributions to cross-modal brain plasticity upon sensory loss. Current opinion in neurobiology. 2021. 67: 16–25.
- Gilmore A.W., Nelson S.M., McDermott K.B. A parietal memory network revealed by multiple MRI methods. Trends in cognitive sciences. 2015. 19(9): 534–543.
- Grech R., Cassar T., Muscat J., Camilleri K.P., Fabri S.G., Zervakis M., Vanrumste B. Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabil. 2008. 5: 25.
- Händel B.F., Haarmeier T., Jensen O. Alpha oscillations correlate with the successful inhibition of unattended stimuli. J. Cogn. Neurosci. 2011. 23(9): 2494–2502.
- Harmony T., Fernández T., Silva J., Bernal J., Díaz-Comas L., Reyes A., Marosi E., Rodríguez M., Rodríguez M. EEG delta activity: An indicator of attention to internal processing during performance of mental tasks. International Journal of Psychophysiology. 1996. 24(1-2): 161–171.
- Jabes A., Klencklen G., Ruggeri P., Antonietti J.P., Banta Lavenex P., Lavenex P. Age-Related Differences in Resting-State EEG and Allocentric Spatial Working Memory Performance. Front. Aging. Neurosci. 2021. 13: 704362.
- Kivimäki M., Walker K.A., Pentti J., et al. Cognitive stimulation in the workplace, plasma proteins, and risk of dementia: three analyses of population cohort studies. BMJ. 2021. 374: n1804.
- Lee H., Keene P.A., Sweigart S.C., Hutchinson J.B., Kuhl B.A. Adding Meaning to Memories: How Parietal Cortex Combines Semantic Content with Episodic Experience. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2023. 43(38): 6525–6537.
- Nourski K.V., Steinschneider M., Rhone A.E., Kovach C.K., Kawasaki H., Howard M.A. 3rd .Gamma Activation and Alpha Suppression within Human Auditory Cortex during a Speech Classification Task. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2022. 42(25): 5034–5046.
- Nyberg L., Lövdén M., Riklund K., Lindenberger U., Bäckman L. Memory aging and brain maintenance. Trends Cogn Sci. 2012. 16 (5): 292–305.
- Pascual-Marqui R.D. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. 2007. arXiv:0710.3341 [math-ph].
- Ptak R. The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry. 2012. 18(5): 502–515.
- Rempe M.P., Ott L.R., Picci G., Penhale S.H., Christopher-Hayes N.J., Lew B.J., Petro N.M., Embury C.M., Schantell M., Johnson H.J., Okelberry H.J., Losh K.L., Willett M.P., Losh R.A., Wang Y.P., Calhoun V.D., Stephen J.M., Heinrichs-Graham E., Kurz M.J., Wilson T.W. Spontaneous cortical dynamics from the first years to the golden years. Proceedings of the National Academy of Sciences of the United States of America. 2023. 120 (4): e2212776120.
- Sengupta A., Banerjee S., Ganesh S., Grover S., Sridharan D. The right posterior parietal cortex mediates spatial reorienting of attentional choice bias. Nature communications. 2024. 15(1): 6938.
- Shusharina N., Yukhnenko D., Botman S., et al. Modern methods of diagnostics and treatment of neurodegenerative diseases and depression. Diagnostics. 2023. 13 (3): 573.
- Schott B.H., Wüstenberg T., Lücke E., Pohl I.M., Richter A., Seidenbecher C.I., Pollmann S., Kizilirmak J.M., Richardson-Klavehn A. Gradual acquisition of visuospatial associative memory representations via the dorsal precuneus. Hum Brain Mapp. 2019. 40(5): 1554–1570.
- Smailovic U., Jelic V. Neurophysiological markers of Alzheimer’s disease: quantitative EEG approach. Neurol Ther. 2019. 8(Suppl 2): 37–55.
- Tröndle M., Popov T., Pedroni A., Pfeiffer C., Barańczuk-Turska Z., Langer N. Decomposing age effects in EEG alpha power. Cortex; a journal devoted to the study of the nervous system and behavior. 2023. 161: 116–144.
- Vysata O., Kukal J., Prochazka A., Pazdera L., and Valis M. Age-related changes in the energy and spectral composition of EEG. Neurophysiology. 2012. 44: 63–67.
- Wijaya A., Setiawan N.A., Ahmad A.H., Zakaria R., Othman Z. Electroencephalography and mild cognitive impairment research: A scoping review and bibliometric analysis (ScoRBA). AIMS neuroscience. 2023. 10 (2): 154–171.
- Jiang Y., Zhang H., Yu S. Changes in delta and theta oscillations in the brain indicate dynamic switching of attention between internal and external processing. In 4th International Conference on Biometric Engineering and Applications (ICBEA ‘21). Association for Computing Machinery. New York. NY. USA. 2021. 25–31 pp.
- Yvert B., Bertrand O., Thévenet M., Echallier J.F., Pernier J. A systematic evaluation of the spherical model accuracy in EEG dipole localization. Electroencephalography and clinical neurophysiology. 1997. 102(5): 452–459.
- Zhozhikashvili N., Zakharov I., Ismatullina V., Feklicheva I., Malykh S., Arsalidou M. Parietal Alpha Oscillations: Cognitive Load and Mental Toughness. Brain Sci. 2022. 12(9): 1135.
补充文件
