Post-traumatic stress disorder: molecular mechanisms of the intergenerational and transgenerational inheritance
- 作者: Patkin E.L.1, Suchkova I.O.1, Tsikunov S.G.1, Sofronov H.A.1,2
-
隶属关系:
- Institute of Experimental Medicine
- Military Medical Academy named after. C.M. Kirov of the Ministry of Defense of the Russian Federation
- 期: 卷 55, 编号 4 (2024)
- 页面: 3-26
- 栏目: Articles
- URL: https://gynecology.orscience.ru/0301-1798/article/view/676175
- DOI: https://doi.org/10.31857/S0301179824040011
- EDN: https://elibrary.ru/AHHYDF
- ID: 676175
如何引用文章
详细
Post-traumatic stress disorder is a mental disorder that is closely associated with dysfunction of the hypothalamic-pituitary-adrenal axis, and for its development is required the experience of a traumatic event that causes negative emotions and memories that persist for quite a long time. The likelihood of development of post-traumatic stress disorder is influenced both environmental factors, and genetic and epigenetic characteristics of the body. In this case epigenetic modifications act as dynamic biomarkers (“nanotags”) of the impact of the environment on the genome (epigenome), which can, under certain conditions, disappear or remain not only in an individual directly exposed to psychogenic trauma, but also transmitted over a number of generations. Review focuses on the possible mechanisms of intergenerational and transgenerational inheritance of the biological effects of post-traumatic and stress-related disorders.
全文:

作者简介
E. Patkin
Institute of Experimental Medicine
编辑信件的主要联系方式.
Email: elp44@mail.ru
俄罗斯联邦, St. Petersburg, 197022
I. Suchkova
Institute of Experimental Medicine
Email: irsuchkova@mail.ru
俄罗斯联邦, St. Petersburg, 197022
S. Tsikunov
Institute of Experimental Medicine
Email: secikunov@yandex.ru
俄罗斯联邦, St. Petersburg, 197022
H. Sofronov
Institute of Experimental Medicine; Military Medical Academy named after. C.M. Kirov of the Ministry of Defense of the Russian Federation
Email: gasofronov@mail.ru
俄罗斯联邦, St. Petersburg, 197022; St. Petersburg, 194044
参考
- Авалиани Т.В., Апраксина Н.К., Цикунов С.Г. Применение вазопрессина для коррекции последствий влияния психогенной травмы матерей на поведение потомства // Евразийский Союз Ученых (ЕСУ). 2020. Т. 3. № 9(78). С. 4–10. https://doi.org/10.31618/ESU.2413-9335.2020.3.78.1013
- Августинович Д.Ф., Алексеенко О.В., Бакштановская И.В., Корякина Л.А., Липина Т.В. и др. Динамические изменения серотонергической и дофаминергической активности мозга в процессе развития тревожной депрессии: экспериментальное исследование // Успехи физиол. наук. 2004. Т. 35. № 4. С. 19–40.
- Авдеева Н.Н. Биологические детерминанты материнского поведения // Современная зарубежная психология (электронный ресурс). 2022. Т. 11. № 1. С. 7–16. https://doi.org/
- Апраксина Н.К., Немцева П.С., Авалиани Т.В., Сучкова И.О., Паткин Е.Л. и др. Отсроченное влияние витального стресса на уровень полногеномного метилирования ДНК на разных стадиях эстрального цикла самок крыс // Патогенез. 2022. Т. 25. № 3. С. 65–66. https://doi.org/10.25557/2310-0435.2022.03.65-66
- Дубинина Е.Е., Щедрина Л.В., Мазо Г.Э. Основные биохимические аспекты патогенеза депрессии. Часть I // Успехи физиол. наук. 2018. Т. 49. № 1. С. 28–49.
- Дубинина Е.Е., Щедрина Л.В., Мазо Г.Э. Основные биохимические аспекты патогенеза депрессии. Часть II // Успехи физиол. наук. 2021. Т. 52. № 1. С. 31–48. https://doi.org/10.31857/S0301179821010033
- Дюжикова Н.А., Даев Е.В. Геном и стресс-реакция у животных и человека // Экологическая генетика. 2018. Т. 16. № 1. С. 4–26. https://doi.org/10.17816/ecogen1614-26
- Дюжикова Н.А., Скоморохова Е.Б., Вайдо А.И. Эпигенетические механизмы формирования постстрессорных состояний // Успехи физиол. наук. 2015. Т. 46. № 1. С. 47–75.
- Евдокимов В.И., Шамрей В.К., Плужник М.С. Развитие научных исследований по боевому стрессу в отечественных статьях с использованием программы VOSVIEWER (2005-2021 гг.) // Мед.-биол. и соц.-психол. пробл. безопасности в чрезв. ситуациях. 2023. Т. 2. № 2. С. 99–116. https://doi.org/10.25016/2541-7487-2023-0-2-99-116
- Клюева Н.Н., Авалиани Т.В., Апраксина Н.К. Липидный спектр у потомства крыс в модели прекондиционирования психотравмирующего воздействия // Обзоры по клинической фармакологии и лекарственной терапии. 2020. Т. 18. № 1. С. 57–61. https://doi.org/10.17816/RCF18157-61
- Кузник Б.И., Чалисова Н.И., Цыбиков Н.Н., Линькова Н.С., Давыдов С.О. Стресс, старение и единая гуморальная защитная система организма. эпигенетические механизмы регуляции // Успехи физиол. наук. 2020. Т. 51. № 3. С. 51–68. https://doi.org/10.31857/S030117982002006X
- Кучер А.Н. Нейрогенное воспаление: биохимические маркеры, генетический контроль и болезни // Бюл. сибир. мед. 2020. Т. 19. № 2. С. 171–181. https://doi.org/10.20538/1682-0363-2020-2-171-181
- Ордян Н.Э., Малышева О.В., Акулова В.К., Пивина С.Г., Холова Г.И. Способность к обучению и экспрессия гена инсулиноподобного фактора роста II в мозге самцов крыс – потомков отцов, подвергнутых стрессирующему воздействию в парадигме “стресс–рестресс”// Нейрохимия. 2020. Т. 37. № 2. С. 153–160. https://doi.org/10.31857/S1027813320020077
- Ордян Н.Э., Пивина С.Г., Акулова В.К., Холова Г.И. Изменение характера поведения и активности гипофизарно-адренокортикальной системы крыс – потомков отцов, подвергнутых стрессированию в парадигме “стресс–рестресс” перед спариванием // Рос. физиолог. журн. им. И.М. Сеченова. 2020. Т. 106. № 9. С. 1085–1097. https://doi.org/10.31857/S0869813920090058
- Ордян Н.Э., Пивина С.Г., Миронова В.И., Ракитская В.В., Акулова В.К. Активность гипоталамо-гипофизарно-адренокортикальной системы пренатально стрессированных самок крыс в модели посттравматического стрессового расстройства // Рос. физиолог. журн. им. И.М. Сеченова. 2014. Т. 100. № 12. С. 1409–1420.
- Ордян Н.Э., Смоленский И.В., Пивина С.Г., Акулова В.К. Особенности формирования тревожно-депрессивного состояния в экспериментальной модели посттравматического стрессового расстройства у пренатально стрессированных самцов крыс // Журн. высш. нервн. деят. им. И.П. Павлова. 2013. Т. 63. № 2. С. 280-289. https://doi.org/10.7868/S0044467713020068
- Павлова М.Б., Дюжикова Н.А. Дифференциальная экспрессия генов нейромедиаторных систем в гиппокампе крыс, селектированных по порогу нервной возбудимости: влияние стресса // Сб. тез. XXIV съезда физиолог. общ. им. И.П. Павлова. СПб. 2023. С. 210–211.
- Павлова М.Б., Смагин Д.А., Кудрявцева Н.Н., Дюжикова Н.А. Изменение экспрессии генов, ассоциированных с кальциевыми процессами в гиппокампе мышей, под влиянием хронического социального стресса // Молекулярная биология. 2023. Т. 57. № 2. С. 373–383. https://doi.org/10.31857/S0026898423020192
- Паткин Е.Л. Эпигенетические механизмы распространенных заболеваний человека. СПб.: Нестор-История. 2008. 196 с.
- Паткин Е.Л., Софронов Г.А. Эколого-зависимые заболевания человека. Эпигенетические механизмы возникновения и наследования // Мед. акад. журн. 2015. Т. 15. № 3. С. 7–23.
- Паткин Е.Л., Сучкова И.О. Регуляторные механизмы импринтинга у млекопитающих // Цитология. 2006. Т. 48. № 7. С. 578–594.
- Пивина С.Г., Акулова В.К., Ракицкая В.В., Ордян Н.Э. Развитие поведенческих и гормональных нарушений в экспериментальной модели постравматического стрессового расстройства у пренатально стрессированных самок крыс // Бюл. эксперимент. биол.и мед. 2014. Т. 157. № 3. С. 289–293. https://doi.org/10.1007/s10517-014-2554-5.
- Пивина С.Г., Ракицкая В.В., Акулова В.К., Ордян Н.Э. Активность гипоталамо-гипофизарно-надпочечниковой системы пренатально стрессированных самцов крыс в экспериментальной модели посттравматического стрессового расстройства // Бюллетень экспериментальной биологии и медицины. 2015. Т. 160. № 11. С. 542–545. https://doi.org/10.1007/s10517-016-3227-3
- Рагаева Д.С., Игонина Т.Н., Брусенцев Е.Ю., Рожкова И.Н., Амстиславский С.Я. Отдаленные последствия ранних пренатальных воздействий на физиологические и поведенческие характеристики потомков // Успехи физиол. наук. 2018. Т. 49. № 4. С. 30–44. https://doi.org/10.7868/S0301179818040033
- Розанов В.А. Стресс-индуцированные эпигенетические феномены – еще один вероятный биологический фактор суицида // Суицидология. 2015. Т. 6. № 3(20). С. 3–19.
- Соколов П.Л., Чебаненко Н.В., Медная Д.М. Эпигенет. влияния и развитие мозга // Журн. неврол. и психиатрии им. С.С. Корсакова. 2023. Т. 123. № 3. С. 12–19. https://doi.org/https://doi.org/10.17116/jnevro202312303112
- Степаничев М.Ю., Недогреева О.А., Климанова М.А. и др. Хронический стресс, вызванный содержанием в условиях дефицита гнездового материала в раннем постнатальном периоде, оказывает влияние на поведение и стресс-реактивность самцов крыс // Журн. высш. нервн. деят. 2021. Т. 71. № 3. С. 370–386. https://doi.org/10.31857/S0044467721030096
- Темирханова К.Т., Цикунов С.Г., Мельнов С.Б., Пятибрат Е.Д. Влияние перенесенной психической травмы высокого риска террористической угрозы в пубертатном периоде на репродуктивную функцию женщин // Вест. Санкт-Петербургского ун-та (Медицина). 2018. Т. 13. № 2. С. 152–163. https://doi.org/10.21638/11701/spbu11.2018.203
- Темирханова К.Т., Цикунов С.Г., Пятибрат А.О. Особенности полового развития девочек, матери которых в догравидарном периоде пережили витальный стресс // Мед.-биол. и соц.-психол. пробл. безопасн. в чрезв. ситуац. 2017. Т. 1. № 1. С. 54–61. https://doi.org/10.25016/2541-7487-2017-0-54-61
- Темирханова К.Т., Цикунов С.Г., Пятибрат А.О. Психологические особенности у женщин республики Дагестан, переживших стресс террористической угрозы // Мед.-биол. и соц.-психол. пробл. безопасн. в чрезв. ситуац. 2017. Т. 3. № 3. С. 101-109. https://doi.org/10.25016/2541-7487-2017-0-3-101-109
- Тиссен И.Ю., Лебедев А.А., Цикунов С.Г., Шабанов П.Д. Кисспептин уменьшает проявления половой дисфункции у крыс в модели посттравматического стрессового расстройства // Психофармакология и биологическая наркология. 2023. Т. 14. № 4. С. 237–244. https://doi.org/10.17816/phbn623033
- Тиссен И.Ю., Якушина Н.Д., Лебедев А.А. и др. Эффекты антагониста OX1R рецепторов орексина А SB-408124 на компульсивное поведение и уровень тревожности после витального стресса у крыс // Обзоры по клинической фармакологии и лекарственной терапии. 2018. Т. 16. № 1. С. 34–42. https://doi.org/10.17816/RCF16134-42
- Толкунова К.М., Могучая Е.В., Ротарь О.П. Трансгенерационное наследование: современные подходы к поиску причин заболеваний // Артериальная гипертензия. 2021. Т. 27. № 2. С. 122–132. https://doi.org/10.18705/1607-419X-2021-27-2-122-132
- Фаустова А.Г. Современные представления о генетических маркерах посттравматического стрессового расстройства // Клиническая и специальная психология (Электронный ресурс). 2021. Т. 10. № 1. С. 61–79. https://doi.org/10.17759/cpse.2021100104
- Фаустова А.Г., Юров И.Ю. Эпигенетические и геномные механизмы в патогенезе посттравматического стрессового расстройства (обзор) // Научные результаты биомедицинских исследований. 2022. Т. 8. № 1. С. 15–35. https://doi.org/10.18413/2658-6533-2022-8-1-0-2
- Шалагинова И.Г., Зачепило Т.Г., Дюжикова Н.А. Влияние длительного эмоционально-болевого стрессорного воздействия на экспрессию гена BDNF в мозге крыс с контрастной возбудимостью нервной системы // Мед. акад. журн. 2023. Т. 23. № 1. С. 67–74. https://doi.org/10.17816/MAJ119980
- Abdullahi P.R., Raeis-Abdollahi E., Sameni H., Vafaei A.A. et al. Protective effects of morphine in a rat model of post-traumatic stress disorder: Role of hypothalamic-pituitary-adrenal axis and beta-adrenergic system // Behav Brain Res. 2020. V. 395. P. 112867. https://doi.org/10.1016/j.bbr.2020.112867
- Adeoya-Osiguwa S.A., Gibbons R., Fraser L.R. Identification of functional alpha2- and beta-adrenergic receptors in mammalian spermatozoa // Hum Reprod. 2006. V. 21. № 6. P. 1555–1563. https://doi.org/10.1093/humrep/del016
- Afifi T.O., Asmundson G.J., Taylor S., Jang K.L. The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: a review of twin studies // Clin Psychol Rev. 2010. V. 30. № 1. P. 101–112. https://doi.org/10.1016/j.cpr.2009.10.002
- Alhassen S., Chen S., Alhassen L. et al. Intergenerational trauma transmission is associated with brain metabotranscriptome remodeling and mitochondrial dysfunction // Commun Biol. 2021. V. 4. № 1. P. 783. https://doi.org/10.1038/s42003-021-02255-2
- Allis D.C.D., Caparro M.-L., Jenuwein T., Reinberg D., Lachner M. Epigenetics. Second edition. New-York, USA: Cold Springer Harbor Laboratory Press. Cold Spring Harbor. 2015. 967 p.
- American psychiatric association. Diagnostic and statistical manual of mental disorders. Fifth edition. Arlington VA: American Psychiatric Association. 2013. 992 p.
- Amstadter A.B., Koenen K.C., Ruggiero K.J. et al. Variation in RGS2 is associated with suicidal ideation in an epidemiological study of adults exposed to the 2004 Florida hurricanes // Arch Suicide Res. 2009. V. 13. № 4. P. 349–357. https://doi.org/10.1080/13811110903266541
- Andero R., Ressler K.J. Fear extinction and BDNF: Translating animal models of PTSD to the clinic // Genes Brain Behav. 2012. V. 11. № 5. P. 503–512. https://doi.org/10.1111/j.1601-183X.2012.00801.x
- Antontseva E.V., Bondar N.P. Chromatin remodeling in oligodendrogenesis // Vavilov Journal of Genetics and Breeding. 2021. V. 25. № 5. P. 573–579. https://doi.org/10.18699/VJ21.064
- Arai J.A., Li S., Hartley D.M., Feig L.A. Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment // J. Neurosci. 2009. V. 29. № 5. P. 1496–1502. https://doi.org/10.1523/jneurosci.5057-08.2009
- Avaliani T.V., Belobokova N.K., Lazarenko N.S., Tsikunov S.G. Peculiarities of behavior of offspring of rats-ambidexters surviving vital stress // J. Evolutionary Biochemistry and Physiology. 2013. V. 49. № 6. P. 570–578. https://doi.org/10.1134/S0022093013060042
- Bam M., Yang X., Ginsberg J.P. et al. Long non-coding RNA LINC00926 regulates WNT10B signaling pathway thereby altering inflammatory gene expression in PTSD // Transl Psychiatry. 2022. V. 12. № 1. P. 200. https://doi.org/10.1038/s41398-022-01971-5
- Barnhill J.W. Posttraumatic stress disorder (PTSD). In: MSD Manual. Professional version. 2023. https://www.msdmanuals.com/professional/psychiatric-disorders/anxiety-and-stressor-related-disorders/posttraumatic-stress-disorder-ptsd (accessed: 14.01.2024.).
- Bartoli F., Cioni R.M., Cavaleri D. et al. The association of kynurenine pathway metabolites with symptom severity and clinical features of bipolar disorder: An overview // Eur Psychiatry. 2022. V. 65. № 1. P. e82. https://doi.org/10.1192/j.eurpsy.2022.2340
- Ben David G., Amir Y., Tripathi K. et al. Exposure to juvenile stress induces epigenetic alterations in the GABAergic system in rats // Genes (Basel). 2023. V. 14. № 3. P. 565. https://doi.org/10.3390/genes14030565
- Ben-Azu B., Adebayo O.G., Moke E.G. et al. Geraniol attenuates behavioral and neurochemical impairments by inhibitions of HPA-axis and oxido-inflammatory perturbations in mice exposed to post-traumatic stress disorder // J. Psychiatr Res. 2023. V. 168. P. 165–175. https://doi.org/10.1016/j.jpsychires.2023.10.057
- Berger S.L., Kouzarides T., Shiekhattar R., Shilatifard A. An operational definition of epigenetics // Genes Dev. 2009. V. 23. № 7. P. 781–783. https://doi.org/10.1101/gad.1787609
- Bernabe C.S., Caliman I.F., de Abreu A.R.R. et al. Identification of a novel perifornical-hypothalamic-area-projecting serotonergic system that inhibits innate panic and conditioned fear responses // Transl Psychiatry. 2024. V. 14. № 1. P. 60. https://doi.org/10.1038/s41398-024-02769-3
- Bhattacharya S., Fontaine A., MacCallum P.E., Drover J., Blundell J. Stress across generations: DNA methylation as a potential mechanism underlying intergenerational effects of stress in both post-traumatic stress disorder and pre-clinical predator stress rodent models // Front Behav Neurosci. 2019. V. 13. P. 113. https://doi.org/10.3389/fnbeh.2019.00113
- Bian Y.Y., Yang L.L., Zhang B. et al. Identification of key genes involved in post-traumatic stress disorder: Evidence from bioinformatics analysis // World J. Psychiatry. 2020. V. 10. № 12. P. 286–298. https://doi.org/10.5498/wjp.v10.i12.286
- Bielawski T., Misiak B., Moustafa A., Frydecka D. Epigenetic mechanisms, trauma, and psychopathology: Targeting chromatin remodeling complexes // Rev Neurosci. 2019. V. 30. № 6. P. 595–604. https://doi.org/10.1515/revneuro-2018-0055
- Bohacek J., Farinelli M., Mirante O. et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress // Mol. Psychiatry. 2015. V. 20. № 5. P. 621–631. https://doi.org/10.1038/mp.2014.80
- Borgonetti V., Cruz B., Vozella V. et al. IL-18 signaling in the rat central amygdala is disrupted in a comorbid model of post-traumatic stress and alcohol use disorder // Cells. 2023. V. 12. № 15. P. 1943. https://doi.org/10.3390/cells12151943
- Brady K.T., Killeen T.K., Brewerton T., Lucerini S. Comorbidity of psychiatric disorders and posttraumatic stress disorder // J. Clin Psychiatry. 2000. V. 61 Suppl 7. P. 22-32.
- Bryleva E.Y., Brundin L. Kynurenine pathway metabolites and suicidality // Neuropharmacology. 2017. V. 112. № Pt B. P. 324–330. https://doi.org/10.1016/j.neuropharm.2016.01.034
- Burggren W. Epigenetic inheritance and its role in evolutionary biology: Re-evaluation and new perspectives // Biology (Basel). 2016. V. 5. № 2. P. 24. https://doi.org/10.3390/biology5020024
- Bürgin D., Anagnostopoulos D., Vitiello B. et al. Impact of war and forced displacement on children's mental health-multilevel, needs-oriented, and trauma-informed approaches // Eur Child Adolesc Psychiatry. 2022. V. 31. № 6. P. 845–853. https://doi.org/10.1007/s00787-022-01974-z
- Carter J.K., Quach B.C., Willis C. et al. Identifying novel gene dysregulation associated with opioid overdose death: A meta-analysis of differential gene expression in human prefrontal cortex // medRxiv (Preprint). 2024. https://doi.org/10.1101/2024.01.12.24301153
- Casier K., Boivin A., Carré C., Teysset L. Environmentally-induced transgenerational epigenetic inheritance: implication of PIWI interacting RNAs // Cells. 2019. V. 8. № 9. P. 1108. https://doi.org/10.3390/cells8091108
- Chagas L.A., Batista T.H., Ribeiro A. et al. Anxiety-like behavior and neuroendocrine changes in offspring resulting from gestational post-traumatic stress disorder // Behav Brain Res. 2021. V. 399. P. 113026. https://doi.org/10.1016/j.bbr.2020.113026
- Cheng T.L., Wang Z., Liao Q. et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex // Dev. Cell. 2014. V. 28. № 5. P. 547–560. https://doi.org/10.1016/j.devcel.2014.01.032
- Childs G.V., Odle A.K., MacNicol M.C., MacNicol A.M. The importance of leptin to reproduction // Endocrinology. 2021. V. 162. № 2. P. bqaa204. https://doi.org/10.1210/endocr/bqaa204
- Chou P.C., Huang Y.C., Yu S. Mechanisms of epigenetic inheritance in post-traumatic stress disorder // Life (Basel). 2024. V. 14. № 1. P. 98. https://doi.org/10.3390/life14010098
- Čikoš Š., Czikková S., Chrenek P. et al. Expression of adrenergic receptors in bovine and rabbit oocytes and preimplantation embryos // Reprod Domest Anim. 2014. V. 49. № 1. P. 92–100. https://doi.org/10.1111/rda.12233
- Clapier C.R., Cairns B.R. The biology of chromatin remodeling complexes // Annu Rev Biochem. 2009. V. 78. P. 273–304. https://doi.org/10.1146/annurev.biochem.77.062706.153223
- Coelho A.A., Lima-Bastos S., Gobira P.H., Lisboa S.F. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders // Neuronal Signal. 2023. V. 7. № 2. P. Ns20220034. https://doi.org/10.1042/ns20220034
- Cohen S., Janicki-Deverts D., Miller G.E. Psychological stress and disease // Jama. 2007. V. 298. № 14. P. 1685–1687. https://doi.org/10.1001/jama.298.14.1685
- Crombach A., Rukundo-Zeller A.C., Vukojevic V. et al. Differential methylation of linoleic acid pathway genes is associated with PTSD symptoms – a longitudinal study with Burundian soldiers returning from a war zone // Transl Psychiatry. 2024. V. 14. № 1. P. 32. https://doi.org/10.1038/s41398-024-02757-7
- Davis L.L., Petrakis I.L., Pilkinton P.D. et al. Comorbid alcohol use disorder and posttraumatic stress disorder: A proof-of-concept randomized placebo-controlled trial of buprenorphine and naltrexone combination treatment // Alcohol Clin Exp Res (Hoboken). 2023. V. 47. № 9. P. 1756–1772. https://doi.org/10.1111/acer.15155
- Denis H., Ndlovu M.N., Fuks F. Regulation of mammalian DNA methyltransferases: A route to new mechanisms // EMBO Rep. 2011. V. 12. № 7. P. 647–656. https://doi.org/10.1038/embor.2011.110
- Dias B.G., Ressler K.J. Experimental evidence needed to demonstrate inter- and trans-generational effects of ancestral experiences in mammals // Bioessays. 2014. V. 36. № 10. P. 919–923. https://doi.org/10.1002/bies.201400105
- Dionisio-García D.M., Genis-Mendoza A.D., González-Castro T.B. et al. DNA methylation of genes involved in the HPA axis in presence of suicide behavior: a systematic review // Brain Sci. 2023. V. 13. № 4. P. 584. https://doi.org/10.3390/brainsci13040584
- Dirven B.C.J., Homberg J.R., Kozicz T., Henckens M. Epigenetic programming of the neuroendocrine stress response by adult life stress // J. Mol. Endocrinol. 2017. V. 59. № 1. P. R11-r31. https://doi.org/10.1530/jme-17-0019
- Doan T.N.A., Cowley J.M., Phillips A.L. et al. Imprinted gene alterations in the kidneys of growth restricted offspring may be mediated by a long non-coding RNA // Epigenetics. 2024. V. 19. № 1. P. 2294516. https://doi.org/10.1080/15592294.2023.2294516
- Đorović Đ., Lazarevic V., Aranđelović J. et al. Maternal deprivation causes CaMKII downregulation and modulates glutamate, norepinephrine and serotonin in limbic brain areas in a rat model of single prolonged stress // J. Affect Disord. 2024. V. 349. P. 286–296. https://doi.org/10.1016/j.jad.2024.01.087
- Duncan L.E., Cooper B.N., Shen H. Robust findings from 25 years of PTSD genetics research // Curr Psychiatry Rep. 2018. V. 20. № 12. P. 115. https://doi.org/10.1007/s11920-018-0980-1
- Etami Y., Lildharrie C., Manza P., Wang G.J., Volkow N.D. Neuroimaging in adolescents: Post-traumatic stress disorder and risk for substance use disorders // Genes (Basel). 2023. V. 14. № 12. P. 2113. https://doi.org/10.3390/genes14122113
- Fraga M.F., Ballestar E., Paz M.F., Ropero S., Setien F. et al. Epigenetic differences arise during the lifetime of monozygotic twins // Proc Natl Acad Sci U S A. 2005. V. 102. № 30. P. 10604–10609. https://doi.org/10.1073/pnas.0500398102
- Gapp K., Jawaid A., Sarkies P., Bohacek J., Pelczar P. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice // Nat Neurosci. 2014. V. 17. № 5. P. 667–669. https://doi.org/10.1038/nn.3695
- Gapp K., Soldado-Magraner S., Alvarez-Sánchez M. et al. Early life stress in fathers improves behavioural flexibility in their offspring // Nat Commun. 2014. V. 5. P. 5466. https://doi.org/10.1038/ncomms6466
- Giridharan V.V., Thandavarayan R.A., Fries G.R. et al. Newer insights into the role of miRNA a tiny genetic tool in psychiatric disorders: Focus on post-traumatic stress disorder // Transl Psychiatry. 2016. V. 6. № 11. P. e954. https://doi.org/10.1038/tp.2016.220
- Glenn D.M., Beckham J.C., Feldman M.E., Kirby A.C., Hertzberg M.A. et al. Violence and hostility among families of Vietnam veterans with combat-related posttraumatic stress disorder // Violence Vict. 2002. V. 17. № 4. P. 473–489. https://doi.org/10.1891/vivi.17.4.473.33685
- Gökbuget D., Blelloch R. Epigenetic control of transcriptional regulation in pluripotency and early differentiation // Development. 2019. V. 146. № 19. P. dev164772. https://doi.org/10.1242/dev.164772
- Guffanti G., Galea S., Yan L. et al. Genome-wide association study implicates a novel RNA gene, the lincRNA AC068718.1, as a risk factor for post-traumatic stress disorder in women // Psychoneuroendocrinology. 2013. V. 38. № 12. P. 3029–3038. https://doi.org/10.1016/j.psyneuen.2013.08.014
- Guillot C.R., Fanning J.R., Liang T. An α-synuclein gene (SNCA) polymorphism moderates the association of PTSD symptomatology with hazardous alcohol use, but not with aggression-related measures // J. Anxiety Disord. 2015. V. 30. P. 41–47. https://doi.org/10.1016/j.janxdis.2014.12.007
- Gunter H.N., O'Toole B.I., Dadds M.M., Catts S.V. Family emotional climate in childhood and risk of PTSD in adult children of Australian Vietnam veterans // Psychiatry Res. 2020. V. 294. P. 113509. https://doi.org/10.1016/j.psychres.2020.113509
- Guo J., Orgeta V., Olivé I. et al. Biomarkers associated with cognitive impairment in post-traumatic stress disorder: A systematic review of current evidence // Ageing Res Rev. 2024. V. 95. P. 102198. https://doi.org/10.1016/j.arr.2024.102198
- Hammond C.M., Strømme C.B., Huang H., Patel D.J., Groth A. Histone chaperone networks shaping chromatin function // Nat Rev Mol Cell Biol. 2017. V. 18. № 3. P. 141–158. https://doi.org/10.1038/nrm.2016.159
- Herman J.L. Complex PTSD: A syndrome in survivors of prolonged and repeated trauma // Journal of Traumatic Stress. 1992. V. 5. № 3. P. 377–391. https://doi.org/https://doi.org/10.1002/jts.2490050305
- Hinchey L.M., Nashef R., Bazzi C., Gorski K., Javanbakht A. The longitudinal impact of war exposure on psychopathology in Syrian and Iraqi refugee youth // Int J. Soc Psychiatry. 2023. V. 69. № 7. P. 1833–1836. https://doi.org/10.1177/00207640231177829
- Holesh J.E., Bass A.N., Lord M. Physiology, Ovulation // StatPearls. Treasure Island (FL) ineligible companies: StatPearls Publishing LLC. 2023.
- Holter K.M., Pierce B.E., Gould R.W. Metabotropic glutamate receptor function and regulation of sleep-wake cycles // Int. Rev. Neurobiol. 2023. V. 168. P. 93–175. https://doi.org/10.1016/bs.irn.2022.11.002
- Horn S.R., Charney D.S., Feder A. Understanding resilience: New approaches for preventing and treating PTSD // Exp Neurol. 2016. V. 284. № Pt B. P. 119–132. https://doi.org/10.1016/j.expneurol.2016.07.002
- Howie H., Rijal C.M., Ressler K.J. A review of epigenetic contributions to post-traumatic stress disorder // Dialogues Clin Neurosci. 2019. V. 21. № 4. P. 417–428. https://doi.org/10.31887/DCNS.2019.21.4/kressler
- Huang J., Xu F., Yang L., Tuolihong L. et al. Involvement of the GABAergic system in PTSD and its therapeutic significance // Front Mol Neurosci. 2023. V. 16. P. 1052288. https://doi.org/doi: 10.3389/fnmol.2023.1052288
- Huang Y., Liu Q., Huang G., Wen J., Chen G. Hypothalamic kisspeptin neurons regulates energy metabolism and reproduction under chronic stress // Front Endocrinol (Lausanne). 2022. V. 13. P. 844397. https://doi.org/10.3389/fendo.2022.844397
- Husmann D., Gozani O. Histone lysine methyltransferases in biology and disease // Nat Struct Mol Biol. 2019. V. 26. № 10. P. 880–889. https://doi.org/10.1038/s41594-019-0298-7
- Inoue C., Shawler E., Jordan C.H., Moore M.J., Jackson C.A. Veteran and military mental health issues // StatPearls. Treasure Island (FL) ineligible companies: StatPearls Publishing LLC. 2023.
- Johnson A.M., Teoh D., Jewett P. et al. Genetic variants associated with post-traumatic stress symptoms in patients with gynecologic cancer // Gynecol Oncol. 2023. V. 170. P. 102–107. https://doi.org/10.1016/j.ygyno.2023.01.006
- Kadriu B., Farmer C.A., Yuan P. et al. The kynurenine pathway and bipolar disorder: Intersection of the monoaminergic and glutamatergic systems and immune response // Mol Psychiatry. 2021. V. 26. № 8. P. 4085–4095. https://doi.org/10.1038/s41380-019-0589-8
- Kaikkonen M.U., Lam M.T., Glass C.K. Non-coding RNAs as regulators of gene expression and epigenetics // Cardiovasc Res. 2011. V. 90. № 3. P. 430–440. https://doi.org/10.1093/cvr/cvr097
- Kang J.I., Kim T.Y., Choi J.H., So H.S., Kim S.J. Allele-specific DNA methylation level of FKBP5 is associated with post-traumatic stress disorder // Psychoneuroendocrinology. 2019. V. 103. P. 1–7. https://doi.org/10.1016/j.psyneuen.2018.12.226
- Karam E.G., Fayyad J.A., Farhat C. et al. Role of childhood adversities and environmental sensitivity in the development of post-traumatic stress disorder in war-exposed Syrian refugee children and adolescents // Br. J. Psychiatry. 2019. V. 214. № 6. P. 354–360. https://doi.org/10.1192/bjp.2018.272
- Kessler R.C., Berglund P., Demler O. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication // Arch Gen Psychiatry. 2005. V. 62. № 6. P. 593–602. https://doi.org/10.1001/archpsyc.62.6.593
- Kibaly C., Xu C., Cahill C.M., Evans C.J., Law P.Y. Non-nociceptive roles of opioids in the CNS: opioids' effects on neurogenesis, learning, memory and affect // Nat Rev Neurosci. 2019. V. 20. № 1. P. 5–18. https://doi.org/10.1038/s41583-018-0092-2
- Kim G.S., Smith A.K., Nievergelt C.M., Uddin M. Neuroepigenetics of post-traumatic stress disorder // Prog. Mol. Biol. Transl Sci. 2018. V. 158. P. 227–253. https://doi.org/10.1016/bs.pmbts.2018.04.001
- Kim Y.K., Amidfar M., Won E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder // Prog. Neuropsychopharmacol Biol Psychiatry. 2019. V. 91. P. 103–112. https://doi.org/10.1016/j.pnpbp.2018.06.008
- Klarić M., Francisković T., Klarić B. et al. Psychological problems in children of war veterans with posttraumatic stress disorder in Bosnia and Herzegovina: cross-sectional study // Croat Med. J. 2008. V. 49. № 4. P. 491–498. https://doi.org/10.3325/cmj.2008.4.491
- Klengel T., Dias B.G., Ressler K.J. Models of intergenerational and transgenerational transmission of risk for psychopathology in mice // Neuropsychopharmacology. 2016. V. 41. № 1. P. 219–231. https://doi.org/10.1038/npp.2015.249
- Kmita H., Pinna G., Lushchak V.I. Potential oxidative stress related targets of mitochondria-focused therapy of PTSD // Front Physiol. 2023. V. 14. P. 1266575. https://doi.org/10.3389/fphys.2023.1266575
- Kravitz S.N., Gregg C. New subtypes of allele-specific epigenetic effects: Implications for brain development, function and disease // Curr Opin Neurobiol. 2019. V. 59. P. 69–78. https://doi.org/10.1016/j.conb.2019.04.012
- Krešić Ćorić M., Klarić M., Petrov B., Mihić N. Psychological and behavioral problems in children of war veterans with post traumatic stress disorder // The European Journal of Psychiatry. 2016. V. 30. P. 219–230.
- Kwon W.S., Park Y.J., Kim Y.H. et al. Vasopressin effectively suppresses male fertility // PLoS One. 2013. V. 8. № 1. P. e54192. https://doi.org/10.1371/journal.pone.0054192
- Labonté B., Azoulay N., Yerko V., Turecki G., Brunet A. Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder // Transl Psychiatry. 2014. V. 4. № 3. P. e368. https://doi.org/10.1038/tp.2014.3
- Lago T.R., Brownstein M.J., Page E. et al. The novel vasopressin receptor (V1aR) antagonist SRX246 reduces anxiety in an experimental model in humans: a randomized proof-of-concept study // Psychopharmacology (Berl). 2021. V. 238. № 9. P. 2393–2403. https://doi.org/10.1007/s00213-021-05861-4
- Lambert J.E., Holzer J., Hasbun A. Association between parents' PTSD severity and children's psychological distress: A meta-analysis // J. Trauma Stress. 2014. V. 27. № 1. P. 9–17. https://doi.org/10.1002/jts.21891
- Lee H., King A.P., Li Y., Seng J.S. Oxytocin receptor gene, post-traumatic stress disorder and dissociation in a community sample of European American women // BJPsych Open. 2022. V. 8. № 4. P. e104. https://doi.org/10.1192/bjo.2022.74
- Lee H.S., Kwon A., Lee S.H. Oxytocin receptor genes moderate BDNF epigenetic methylation by childhood trauma // J. Affect Disord. 2022. V. 306. P. 167–173. https://doi.org/10.1016/j.jad.2022.03.020
- Leen-Feldner E.W., Feldner M.T., Knapp A. et al. Offspring psychological and biological correlates of parental posttraumatic stress: review of the literature and research agenda // Clin Psychol Rev. 2013. V. 33. № 8. P. 1106–1133. https://doi.org/10.1016/j.cpr.2013.09.001
- Lewis C.R., Tafur J., Spencer S. et al. Pilot study suggests DNA methylation of the glucocorticoid receptor gene (NR3C1) is associated with MDMA-assisted therapy treatment response for severe PTSD // Front Psychiatry. 2023. V. 14. P. 959590. https://doi.org/10.3389/fpsyt.2023.959590
- Li M., Wang X., Yang L. et al. Acupuncture improves learning and memory ability of posttraumatic stress disorder model rats through epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway // Technol. Health. Care. 2023. V. 31. № S1. P. 409–421. https://doi.org/10.3233/thc-236035
- Li Z., Han K., Zhang D. et al. The role of long noncoding RNA in traumatic brain injury // Neuropsychiatr Dis Treat. 2019. V. 15. P. 1671–1677. https://doi.org/10.2147/ndt.S206624
- Liao J., Szabó P.E. Role of transcription in imprint establishment in the male and female germ lines // Epigenomics. 2023. https://doi.org/10.2217/epi-2023-0344
- Ling X., Liu X., Jiang S., Fan L., Ding J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases // Cell Regen. 2022. V. 11. № 1. P. 42. https://doi.org/10.1186/s13619-022-00145-4
- Liu M.N., Tian X.Y., Fang T. et al. Insights into the involvement and therapeutic target potential of the dopamine system in the posttraumatic stress disorder // Mol. Neurobiol. 2023. V. 60. № 7. P. 3708–3723. https://doi.org/10.1007/s12035-023-03312-z
- López L., Lozano K., Cruz J. et al. Measurement of neuropeptide Y with molecularly imprinted polypyrrole on carbon fiber microelectrodes // Neuropeptides. 2024. V. 104. P. 102413. https://doi.org/10.1016/j.npep.2024.102413
- Lushchak O., Strilbytska O., Koliada A., Storey K.B. An orchestrating role of mitochondria in the origin and development of post-traumatic stress disorder // Front Physiol. 2022. V. 13. P. 1094076. https://doi.org/10.3389/fphys.2022.1094076
- Maity S., Abbaspour R., Nahabedian D., Connor S.A. Norepinephrine, beyond the Synapse: Coordinating Epigenetic Codes for Memory // Int J. Mol. Sci. 2022. V. 23. № 17. https://doi.org/10.3390/ijms23179916
- Marcolini S., Rojczyk P., Seitz-Holland J. et al. Posttraumatic stress and traumatic brain injury: Cognition, behavior, and neuroimaging markers in Vietnam veterans // J. Alzheimers Dis. 2023. V. 95. № 4. P. 1427–1448. https://doi.org/10.3233/jad-221304
- Marra P.S., Seki T., Nishizawa Y. et al. Genome-wide DNA methylation analysis in female veterans with military sexual trauma and comorbid PTSD/MDD // J. Affect Disord. 2024. V. 351. P. 624–630. https://doi.org/10.1016/j.jad.2024.01.241
- Martsenkovskyi D., Karatzias T., Hyland P. et al. Parent-reported posttraumatic stress reactions in children and adolescents: Findings from the mental health of parents and children in Ukraine study // Psychol Trauma. 2023. https://doi.org/10.1037/tra0001583
- Mehta D., Bruenig D., Carrillo-Roa T. et al. Genome-wideDNA methylation analysis in combat veterans reveals a novel locus for PTSD // Acta Psychiatr Scand. 2017. V. 136. № 5. P. 493–505. https://doi.org/10.1111/acps.12778
- Michalek J., Lisi M., Binetti N. et al. War-related trauma linked to increased sustained attention to threat in children // Child Dev. 2022. V. 93. № 4. P. 900–909. https://doi.org/10.1111/cdev.13739
- Miller M.W. Leveraging genetics to enhance the efficacy of PTSD pharmacotherapies // Neurosci Lett. 2020. V. 726. P. 133562. https://doi.org/10.1016/j.neulet.2018.04.039
- Molnar B.E., Buka S.L., Kessler R.C. Child sexual abuse and subsequent psychopathology: results from the National Comorbidity Survey // Am J. Public Health. 2001. V. 91. № 5. P. 753–760. https://doi.org/10.2105/ajph.91.5.753
- Montgomery K.R., Bridi M.S., Folts L.M. et al. Chemogenetic activation of CRF neurons as a model of chronic stress produces sex-specific physiological and behavioral effects // Neuropsychopharmacology. 2024. V. 49. № 2. P. 443–454. https://doi.org/10.1038/s41386-023-01739-5
- Moodley A., Womersley J.S., Swart P.C. et al. A network analysis investigating the associations between posttraumatic stress symptoms, markers of inflammation and metabolic syndrome // J. Psychiatr Res. 2023. V. 165. P. 105–114. https://doi.org/10.1016/j.jpsychires.2023.07.018
- Moog N.K., Buss C., Entringer S. et al. Maternal exposure to childhood trauma is associated during pregnancy with placental-fetal stress physiology // Biol. Psychiatry. 2016. V. 79. № 10. P. 831–839. https://doi.org/10.1016/j.biopsych.2015.08.032
- Muhammad A., Forcados G.E., Sani H. et al. Epigenetic modifications associated with genes implicated in cytokine storm: The potential biotherapeutic effects of vitamins and minerals in COVID-19 // J. Food Biochem. 2022. V. 46. № 5. P. e14079. https://doi.org/10.1111/jfbc.14079
- Mukadam A.A., Chester J.A. Line- and Sex-dependent effects of juvenile stress on contextual fear- and anxiety-related behavior in high- and low-alcohol-preferring mouse lines // Behav Brain Res. 2024. P. 114899. https://doi.org/10.1016/j.bbr.2024.114899
- Naz R.K., Sellamuthu R. Receptors in spermatozoa: Are they real? // J. Androl. 2006. V. 27. № 5. P. 627–636. https://doi.org/10.2164/jandrol.106.000620
- Nikitina V.A., Zakharova M.V., Trofimov A.N. et al. Neonatal exposure to bacterial lipopolysaccharide affects behavior and expression of ionotropic glutamate receptors in the hippocampus of adult rats after psychogenic Trauma // Biochemistry (Mosc). 2021. V. 86. № 6. P. 761–772. https://doi.org/10.1134/s0006297921060134
- Núñez-Rios D.L., Martínez-Magaña J.J., Nagamatsu S.T. et al. Cross-species convergence of brain transcriptomic and epigenomic findings in posttraumatic stress disorder: a systematic review // Complex Psychiatry. 2023. V. 9. № 1–4. P. 100-118. https://doi.org/10.1159/000529536
- O'Connell C.J., Reeder E.L., Hymore J.A. et al. Transcriptomic dynamics governing serotonergic dysregulation in the dorsal raphe nucleus following mild traumatic brain injury // Exp. Neurol. 2024. V. 374. P. 114695. https://doi.org/10.1016/j.expneurol.2024.114695
- Ordyan N.E., Shigalugova E.D., Malysheva O.V., Pivina S.G., Akulova V.K. et al. Transgenerational effects of prenatal stress on memory and expression of the insulin-like growth factor 2 gene in the offspring brain // J. Evol Biochem Phys. 2023. V. 59. № 5. P. 1526–1535. https://doi.org/10.1134/S002209302305006X
- O'Toole B.I., Burton M.J., Rothwell A. et al. Intergenerational transmission of post-traumatic stress disorder in Australian Vietnam veterans' families // Acta Psychiatr Scand. 2017. V. 135. № 5. P. 363–372. https://doi.org/10.1111/acps.12685
- Ozer E.J., Best S.R., Lipsey T.L., Weiss D.S. Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis // Psycho. Bull. 2003. V. 129. № 1. P. 52–73. https://doi.org/10.1037/0033-2909.129.1.52
- Pape J.C., Binder E.B. Psychological trauma as risk for delayed psychiatric disorders: epigenetic mechanisms // Nervenarzt. 2014. V. 85. № 11. P. 1382–1389. https://doi.org/10.1007/s00115-014-4085-8
- Patel A.B., He Y., Radhakrishnan I. Histone acetylation and deacetylation – Mechanistic insights from structural biology // Gene. 2024. V. 890. P. 147798. https://doi.org/10.1016/j.gene.2023.147798
- Patel R.S., Krause-Hauch M., Kenney K. et al. Long noncoding RNA VLDLR-AS1 levels in serum correlate with combat-related chronic mild traumatic brain injury and depression symptoms in US veterans // Int J. Mol. Sci. 2024. V. 25. № 3. P. 1473. https://doi.org/10.3390/ijms25031473
- Patkin E.L. Epigenetic mechanisms for primary differentiation in mammalian embryos // Int Rev Cytol. 2002. V. 216. P. 81-129. https://doi.org/10.1016/s0074-7696(02)16004-9
- Peedicayil J. Chapter 15. Non-coding RNAs and psychiatric disorders. In: Epigenetics in Psychiatry (Second Edition) / by edt. Peedicayil J. et al. Academic Press. 2021. P. 321–333.
- Peña C.J., Kronman H.G., Walker D.M. et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2 // Science. 2017. V. 356. № 6343. P. 1185–1188. https://doi.org/10.1126/science.aan4491
- Perez M.F., Lehner B. Intergenerational and transgenerational epigenetic inheritance in animals // Nat Cell. Biol. 2019. V. 21. № 2. P. 143–151. https://doi.org/10.1038/s41556-018-0242-9
- Pervanidou P., Kolaitis G., Charitaki S. et al. The natural history of neuroendocrine changes in pediatric posttraumatic stress disorder (PTSD) after motor vehicle accidents: progressive divergence of noradrenaline and cortisol concentrations over time // Biol. Psychiatry. 2007. V. 62. № 10. P. 1095–1102. https://doi.org/10.1016/j.biopsych.2007.02.008
- Phasuk S., Pairojana T., Suresh P. et al. Enhanced contextual fear memory in peroxiredoxin 6 knockout mice is associated with hyperactivation of MAPK signaling pathway // Mol. Brain. 2021. V. 14. № 1. P. 42. https://doi.org/10.1186/s13041-021-00754-1
- Pivina S.G., Rakitskaya V.V., Smolenskii I.V., Akulova V.K., Ordyan N.E. Modification of expression of neurohormones in hypothalamus of prenatally stressed male rats in model of posttraumatic stress disorder // J. Evol Biochem Phys. 2014. V. 50. № 4. P. 345–352. https://doi.org/10.1134/S0022093014040073
- Porgali Zayman E., Bay Karabulut A., Özdemir S., Kartalci Ş. Oxytocin and vasopressin blood levels in people with post-traumatic stress disorder // Alpha Psychiatry. 2023. V. 24. № 5. P. 180–185. https://doi.org/10.5152/alphapsychiatry.2023.21628
- Prajapati S.K., Ahmed S., Rai V., Gupta S.C., Krishnamurthy S. Suvorexant improves mitochondrial dynamics with the regulation of orexinergic and mTOR activation in rats exhibiting PTSD-like symptoms // J. Affect Disord. 2024. V. 350. P. 24–38. https://doi.org/10.1016/j.jad.2024.01.045
- Qi P., Huang M., Ren X. et al. Identification of potential biomarkers and therapeutic targets related to post-traumatic stress disorder due to traumatic brain injury // Eur J. Med Res. 2024. V. 29. № 1. P. 44. https://doi.org/10.1186/s40001-024-01640-x
- Qureshi I.A., Mehler M.F. Impact of nuclear organization and dynamics on epigenetic regulation in the central nervous system: Implications for neurological disease states // Ann NY. Acad Sci. 2010. V. 1204 Suppl. № Suppl. P. E20-37. https://doi.org/10.1111/j.1749-6632.2010.05718.x
- Ravi M., Stevens J.S., Michopoulos V. Neuroendocrine pathways underlying risk and resilience to PTSD in women // Front Neuroendocrinol. 2019. V. 55. P. 100790. https://doi.org/10.1016/j.yfrne.2019.100790
- Redican E., Sachser C., Pfeiffer E. et al. Validation of the Ukrainian caregiver-report version of the child and adolescent trauma screen (CATS) in children and adolescents in Ukraine // Psychol. Trauma. 2023. https://doi.org/10.1037/tra0001570
- Riser M., Norrholm S.D. Pituitary adenylate cyclase activating peptide and post-traumatic stress disorder: From bench to bedside // Front Psychiatry. 2022. V. 13. P. 861606. https://doi.org/10.3389/fpsyt.2022.861606
- Rodgers A.B., Bale T.L. Germ cell origins of posttraumatic stress disorder risk: The transgenerational impact of parental stress experience // Biol. Psychiatry. 2015. V. 78. № 5. P. 307–314. https://doi.org/10.1016/j.biopsych.2015.03.018
- Rodgers A.B., Morgan C.P., Leu N.A., Bale T.L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress // Proc. Natl. Acad. Sci U S A. 2015. V. 112. № 44. P. 13699-13704. https://doi.org/10.1073/pnas.1508347112
- Grabe H.J. Paternal transmission of early life traumatization through epigenetics: Do fathers play a role? // Med. Hypotheses. 2017. V. 109. P. 59–64. https://doi.org/10.1016/j.mehy.2017.09.011
- Rudzki S. Is PTSD an evolutionary survival adaptation initiated by unrestrained cytokine signaling and maintained by epigenetic change? // Mil. Med. 2022. https://doi.org/10.1093/milmed/usac095
- Sabban E.L., Serova L.I., Newman E., Aisenberg N., Akirav I. Changes in gene expression in the locus coeruleus-amygdala circuitry in inhibitory avoidance PTSD model // Cell Mol Neurobiol. 2018. V. 38. № 1. P. 273–280. https://doi.org/10.1007/s10571-017-0548-3
- Safari-Alighiarloo N., Taghizadeh M., Rezaei-Tavirani M., Goliaei B., Peyvandi A.A. Protein-protein interaction networks (PPI) and complex diseases // Gastroenterol Hepatol Bed Bench. 2014. V. 7. № 1. P. 17–31.
- Sartor C.E., Grant J.D., Lynskey M.T. et al. Common heritable contributions to low-risk trauma, high-risk trauma, posttraumatic stress disorder, and major depression // Arch. Gen Psychiatry. 2012. V. 69. № 3. P. 293–299. https://doi.org/10.1001/archgenpsychiatry.2011.1385
- Sartor C.E., McCutcheon V.V., Pommer N.E. et al. Common genetic and environmental contributions to post-traumatic stress disorder and alcohol dependence in young women // Psychol. Med. 2011. V. 41. № 7. P. 1497–1505. https://doi.org/10.1017/s0033291710002072
- Scherma M., Masia P., Satta V. et al. Brain activity of anandamide: A rewarding bliss? // Acta Pharmacol Sin. 2019. V. 40. № 3. P. 309–323. https://doi.org/10.1038/s41401-018-0075-x
- Schreiber A.L., Lu Y.L., Baynes B.B., Richardson H.N., Gilpin N.W. Corticotropin-releasing factor in ventromedial prefrontal cortex mediates avoidance of a traumatic stress-paired context // Neuropharmacology. 2017. V. 113. № Pt A. P. 323–330. https://doi.org/10.1016/j.neuropharm.2016.05.008
- Selimbasic Z., Sinanovic O., Avdibegovic E., Brkic M., Hamidovic J. Behavioral problems and emotional difficulties at children and early adolescents of the veterans of war with post-traumatic stress disorder // Med. Arch. 2017. V. 71. № 1. P. 56–61. https://doi.org/10.5455/medarh.2017.71.56-61
- Shah S.B., Peddada T.N., Song C. et al. Exome-wide association study of treatment-resistant depression suggests novel treatment targets // Sci. Rep. 2023. V. 13. № 1. P. 12467. https://doi.org/10.1038/s41598-023-38984-z
- Shalaginova I.G., Tuchina O.P., Turkin A.V. et al. The effect of long-term emotional and painful stress on the expression of proinflammatory cytokine genes in rats with high and low excitability of the nervous system // J. Evol Biochem Physiol. 2023. V. 59. № 2. P. 642–652. https://doi.org/10.1134/s0022093023020291
- Sheerin C.M., Lind M.J., Bountress K.E., Nugent N.R., Amstadter A.B. The genetics and epigenetics of PTSD: overview, recent advances, and future directions // Curr Opin Psychol. 2017. V. 14. P. 5–11. https://doi.org/10.1016/j.copsyc.2016.09.003
- Short A.K., Yeshurun S., Powell R. et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety // Transl. Psychiatry. 2017. V. 7. № 5. P. e1114. https://doi.org/10.1038/tp.2017.82
- Siegmund A., Dahlhoff M., Habersetzer U. et al. Maternal inexperience as a risk factor of innate fear and PTSD-like symptoms in mice // J. Psychiatr Res. 2009. V. 43. № 14. P. 1156–1165. https://doi.org/10.1016/j.jpsychires.2009.02.003
- Sipos E., Török B., Barna I., Engelmann M., Zelena D. Vasopressin and post-traumatic stress disorder // Stress. 2020. V. 23. № 6. P. 732–745. https://doi.org/10.1080/10253890.2020.1826430
- Skinner M.K. What is an epigenetic transgenerational phenotype? F3 or F2 // Reprod Toxicol. 2008. V. 25. № 1. P. 2–6. https://doi.org/10.1016/j.reprotox.2007.09.001
- M.M. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations // Epigenetics. 2015. V. 10. № 8. P. 762–771. https://doi.org/10.1080/15592294.2015.1062207
- Slone M., Mann S. Effects of war, terrorism and armed conflict on young children: A systematic review // Child Psychiatry Hum Dev. 2016. V. 47. № 6. P. 950–965. https://doi.org/10.1007/s10578-016-0626-7
- War exposure, post-traumatic stress symptoms and hair cortisol concentrations in Syrian refugee children // Mol. Psychiatry. 2023. V. 28. № 2. P. 647–656. https://doi.org/10.1038/s41380-022-01859-2
- Smoller J.W. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders // Neuropsychopharmacology. 2016. V. 41. № 1. P. 297–319. https://doi.org/10.1038/npp.2015.266
- Suarez-Jimenez B., Lazarov A., Zhu X. et al. Intrusive traumatic re-experiencing domain: functional connectivity feature classification by the ENIGMA PTSD consortium // Biol. Psychiatry Glob Open Sci. 2024. V. 4. № 1. P. 299–307. https://doi.org/10.1016/j.bpsgos.2023.05.006
- Sun Y.M., Chen Y.Q. Principles and innovative technologies for decrypting noncoding RNAs: From discovery and functional prediction to clinical application // J. Hematol Oncol. 2020. V. 13. № 1. P. 109. https://doi.org/10.1186/s13045-020-00945-8
- Švorcová J. Transgenerational epigenetic inheritance of traumatic experience in mammals // Genes (Basel). 2023. V. 14. № 1. P. 120. https://doi.org/10.3390/genes14010120
- Szklarczyk K., Korostynski M., Golda S., Solecki W., Przewlocki R. Genotype-dependent consequences of traumatic stress in four inbred mouse strains // Genes Brain Behav. 2012. V. 11. № 8. P. 977–985. https://doi.org/10.1111/j.1601-183X.2012.00850.x
- Tando Y., Matsui Y. Inheritance of environment-induced phenotypic changes through epigenetic mechanisms // Environ Epigenet. 2023. V. 9. № 1. P. dvad008. https://doi.org/10.1093/eep/dvad008
- Tissen I.Y., Chepik P., Lebedev A. et al. Conditioned place preference of kisspeptin-10 // Reviews on Clinical Pharmacology and Drug Therapy. 2021. V. 19. P. 47–53. https://doi.org/10.17816/RCF19147-53
- Tonsfeldt K.J., Cui L.J., Lee J. et al. Female fertility does not require Bmal1 in suprachiasmatic nucleus neurons expressing arginine vasopressin, vasoactive intestinal peptide, or neuromedin-S // Front Endocrinol (Lausanne). 2022. V. 13. P. 956169. https://doi.org/10.3389/fendo.2022.956169
- Toomey R., Alpern R.E., White A.J., Li X., Reda D.J. et al. Physical health, behavioral and emotional functioning in children of gulf war veterans // Life Sci. 2021. V. 282. P. 119777. https://doi.org/10.1016/j.lfs.2021.119777
- Tseilikman V.E., Tseilikman O.B., Pashkov A.A. et al. Mechanisms of susceptibility and resilience to PTSD: role of dopamine metabolism and BDNF expression in the hippocampus // Int J. Mol Sci. 2022. V. 23. № 23. P. 14575. https://doi.org/10.3390/ijms232314575
- Tucci V., Isles A.R., Kelsey G., Ferguson-Smith A.C. Genomic imprinting and physiological processes in mammals // Cell. 2019. V. 176. № 5. P. 952–965. https://doi.org/10.1016/j.cell.2019.01.043
- Uddin M., Ratanatharathorn A., Armstrong D. et al. Epigenetic meta-analysis across three civilian cohorts identifies NRG1 and HGS as blood-based biomarkers for post-traumatic stress disorder // Epigenomics. 2018. V. 10. № 12. P. 1585–1601. https://doi.org/10.2217/epi-2018-0049
- Vaido A.I., Dyuzhikova N.A., Shiryaeva N.V. et al. Systemic control of the molecular, cell, and epigenetic mechanisms of long-lasting consequences of stress // Russian Journal of Genetics. 2009. V. 45. № 3. P. 298–303. https://doi.org/10.1134/S1022795409030065
- Varela R.B., Cararo J.H., Tye S.J. et al. Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: Theoretical framework, evidence, and implications // Neurosci Biobehav Rev. 2022. V. 135. P. 104579. https://doi.org/10.1016/j.neubiorev.2022.104579
- Vertii A. Stress as a chromatin landscape architect // Front Cell Dev Biol. 2021. V. 9. P. 790138. https://doi.org/10.3389/fcell.2021.790138
- Watson C.G., Kucala T., Manifold V. A cross-validation of the Keane and Penk MMPI scales as measures of post-traumatic stress disorder // J. Clin Psychol. 1986. V. 42. № 5. P. 727–732. https://doi.org/10.1002/1097-4679(198609)42:5<727::aid-jclp2270420508>3.0.co;2-4
- Weiss E.M., Parson W., Niederstätter H., Marksteiner J., Lampe A. Genetics of Posttraumatic Stress Disorder (PTSD) // Psychother Psychosom Med. Psychol. 2019. V. 69. № 7. P. 266–274. https://doi.org/10.1055/a-0634-6625
- Wieck A., Grassi-Oliveira R., Hartmann do Prado C., Teixeira A.L., Bauer M.E. Neuroimmunoendocrine interactions in post-traumatic stress disorder: focus on long-term implications of childhood maltreatment // Neuroimmunomodulation. 2014. V. 21. № 2-3. P. 145–151. https://doi.org/10.1159/000356552
- Wittekind C.E., Jelinek L., Kellner M., Moritz S., Muhtz C. Intergenerational transmission of biased information processing in posttraumatic stress disorder (PTSD) following displacement after World War II // J. Anxiety Disord. 2010. V. 24. № 8. P. 953–957. https://doi.org/10.1016/j.janxdis.2010.06.023
- World Health Organization. International statistical classification of diseases and related health problems 10th Revision (ICD-10). Chapter V. Mental and behavioural disorders (F00-F99). Neurotic, stress-related and somatoform disorders (F40-F48). 2019. https://icd.who.int/browse10/2019/en#/F43.0 (accessed: 14.01.2024).
- Xiao B., Han F., Shi Y. Administration of moclobemide facilitates fear extinction and attenuates anxiety-like behaviors by regulating synaptic-associated proteins in a rat model of post-traumatic stress disorder // Synapse. 2020. V. 74. № 6. P. e22146. https://doi.org/10.1002/syn.22146
- Xie Q., Kang Y., Zhang C. et al. The Role of kisspeptin in the control of the hypothalamic-pituitary-gonadal axis and reproduction // Front Endocrinol (Lausanne). 2022. V. 13. P. 925206. https://doi.org/10.3389/fendo.2022.925206
- Yaeger J.D.W., Krupp K.T., Summers T.R., Summers C.H. Contextual generalization of social stress learning is modulated by orexin receptors in basolateral amygdala // Neuropharmacology. 2022. V. 215. P. 109168. https://doi.org/10.1016/j.neuropharm.2022.109168
- Yehuda R., Bell A., Bierer L.M., Schmeidler J. Maternal, not paternal, PTSD is related to increased risk for PTSD in offspring of Holocaust survivors // J. Psychiatr Res. 2008. V. 42. № 13. P. 1104–1111. https://doi.org/10.1016/j.jpsychires.2008.01.002
- Yehuda R., Daskalakis N.P., Bierer L.M. et al. Holocaust exposure induced intergenerational effects on FKBP5 methylation // Biol. Psychiatry. 2016. V. 80. № 5. P. 372–380. https://doi.org/10.1016/j.biopsych.2015.08.005
- Yehuda R., Daskalakis N.P., Desarnaud F. et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD // Front Psychiatry. 2013. V. 4. P. 118. https://doi.org/10.3389/fpsyt.2013.00118
- Yehuda R., Daskalakis N.P., Lehrner A. et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring // Am J. Psychiatry. 2014. V. 171. № 8. P. 872–880. https://doi.org/10.1176/appi.ajp.2014.13121571
- Yehuda R., Daskalakis N.P., Lehrner A. et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring // Am J. Psychiatry. 2014. V. 171. № 8. P. 872–880. https://doi.org/10.1176/appi.ajp.2014.13121571
- Yehuda R., Schmeidler J., Giller E.L., Siever L.J., Binder-Brynes K. Relationship between posttraumatic stress disorder characteristics of Holocaust survivors and their adult offspring // Am J. Psychiatry. 1998. V. 155. № 6. P. 841–843. https://doi.org/10.1176/ajp.155.6.841
- Zhang X., Han Y., Liu X. et al. Assessment of genetic variants in D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD): A systematic review and meta-analysis // J. Affect Disord. 2023. V. 328. P. 312–323. https://doi.org/10.1016/j.jad.2023.02.001
补充文件
