TROPONINS AND SKELETAL MUSCLE PATHOLOGIES
- Authors: Bogomolova A.P.1,2, Katrukha I.A.1,2
-
Affiliations:
- Lomonosov Moscow State University
- Hytest Ltd.
- Issue: Vol 89, No 12 (2024)
- Pages: 2019-2044
- Section: Articles
- URL: https://gynecology.orscience.ru/0320-9725/article/view/677479
- DOI: https://doi.org/10.31857/S0320972524120018
- EDN: https://elibrary.ru/IGIUDM
- ID: 677479
Cite item
Abstract
Skeletal muscles account for ~30-40% of the total weight of human body and are responsible for its most important functions, including movement, respiration, thermogenesis, and glucose and protein metabolism. Skeletal muscle damage negatively impacts the whole-body functioning, leading to deterioration of the quality of life and, in severe cases, death. Therefore, timely diagnosis and therapy for skeletal muscle dysfunction are important goals of modern medicine. In this review, we focused on the skeletal troponins that are proteins in the thin filaments of muscle fibers. Skeletal troponins play a key role in regulation of muscle contraction. Biochemical properties of these proteins and their use as biomarkers of skeletal muscle damage are described in this review. One of the most convenient and sensitive methods of protein biomarker measurement in biological liquids is immunochemical analysis; hence, we examined the factors that influence immunochemical detection of skeletal troponins and should be considered when developing diagnostic test systems. Also, we reviewed the available data on the skeletal troponin mutations that are considered to be associated with pathologies leading to the development of diseases and discussed utilization of troponins as drug targets for treatment of the skeletal muscle disorders.
Keywords
Full Text

About the authors
A. P. Bogomolova
Lomonosov Moscow State University; Hytest Ltd.
Author for correspondence.
Email: bogomolova.agnessa@yandex.ru
Faculty of Biology, Lomonosov Moscow State University
Russian Federation, 119234 Moscow; Turku, FinlandI. A. Katrukha
Lomonosov Moscow State University; Hytest Ltd.
Email: bogomolova.agnessa@yandex.ru
Faculty of Biology, Lomonosov Moscow State University
Russian Federation, 119234 Moscow; Turku, FinlandReferences
- Yin, L., Li, N., Jia, W., Wang, N., Liang, M., Yang, X., and Du, G. (2021) Skeletal muscle atrophy: from mechanisms to treatments, Pharmacol. Res., 172, 105807, https://doi.org/10.1016/j.phrs.2021.105807.
- Janssen, I., Heymsfield, S. B., Wang, Z. M., and Ross, R. (2000) Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr, J. Appl. Physiol., 89, 81-88, https://doi.org/10.1152/jappl.2000.89.1.81.
- Kasper, C. E., Talbot, L. A., and Gaines, J. M. (2002) Skeletal muscle damage and recovery, AACN Clin. Issues, 13, 237-247, https://doi.org/10.1097/00044067-200205000-00009.
- Nagy, H., and Veerapaneni, K. D. (2023) Myopathy, in StatPearls, StatPearls Publishing LLC., Treasure Island (FL).
- Nance, J. R., and Mammen, A. L. (2015) Diagnostic evaluation of rhabdomyolysis, Muscle Nerve, 51, 793-810, https://doi.org/10.1002/mus.24606.
- Cassandrini, D., Trovato, R., Rubegni, A., Lenzi, S., Fiorillo, C., Baldacci, J., Minetti, C., Astrea, G., Bruno, C., and Santorelli, F. M. (2017) Congenital myopathies: clinical phenotypes and new diagnostic tools, Ital. J. Pediatr., 43, 101, https://doi.org/10.1186/s13052-017-0419-z.
- Ahmed, S. T., Craven, L., Russell, O. M., Turnbull, D. M., and Vincent, A. E. (2018) Diagnosis and treatment of mitochondrial myopathies, Neurotherapeutics, 15, 943-953, https://doi.org/10.1007/s13311-018-00674-4.
- Cohen, B. H. (2019) Mitochondrial and metabolic myopathies, Continuum, 25, 1732-1766, https://doi.org/10.1212/con.0000000000000805.
- Burch, P. M., Pogoryelova, O., Goldstein, R., Bennett, D., Guglieri, M., Straub, V., Bushby, K., Lochmüller, H., and Morris, C. (2015) Muscle-derived proteins as serum biomarkers for monitoring disease progression in three forms of muscular dystrophy, J. Neuromuscul. Dis., 2, 241-255, https://doi.org/10.3233/jnd-140066.
- Dalakas, M. C. (2015) Inflammatory muscle diseases, N. Engl. J. Med., 372, 1734-1747, https://doi.org/10.1056/NEJMra1402225.
- Crum-Cianflone, N. F. (2008) Bacterial, fungal, parasitic, and viral myositis, Clin. Microbiol. Rev., 21, 473-494, https://doi.org/10.1128/cmr.00001-08.
- Torres, P. A., Helmstetter, J. A., Kaye, A. M., and Kaye, A. D. (2015) Rhabdomyolysis: pathogenesis, diagnosis, and treatment, Ochsner. J., 15, 58-69.
- Du Souich, P., Roederer, G., and Dufour, R. (2017) Myotoxicity of statins: Mechanism of action, Pharmacol Ther, 175, 1-16, https://doi.org/10.1016/j.pharmthera.2017.02.029.
- Khan, F. Y. (2009) Rhabdomyolysis: a review of the literature, Neth. J. Med., 67, 272-283.
- Fanzani, A., Conraads, V. M., Penna, F., and Martinet, W. (2012) Molecular and cellular mechanisms of skeletal muscle atrophy: an update, J. Cachexia Sarcopenia Muscle, 3, 163-179, https://doi.org/10.1007/s13539- 012-0074-6.
- Jasuja, R., and LeBrasseur, N. K. (2014) Regenerating skeletal muscle in the face of aging and disease, Am. J. Phys. Med. Rehabil., 93, S88-96, https://doi.org/10.1097/phm.0000000000000118.
- Sinclair, A. J., Abdelhafiz, A. H., and Rodríguez-Mañas, L. (2017) Frailty and sarcopenia - newly emerging and high impact complications of diabetes, J. Diabetes Complications, 31, 1465-1473, https://doi.org/10.1016/ j.jdiacomp.2017.05.003.
- Jang, H. C. (2019) Diabetes and muscle dysfunction in older adults, Ann. Geriatr. Med. Res., 23, 160-164, https://doi.org/10.4235/agmr.19.0038.
- Cleasby, M. E., Jamieson, P. M., and Atherton, P. J. (2016) Insulin resistance and sarcopenia: mechanistic links between common co-morbidities, J. Endocrinol., 229, R67-81, https://doi.org/10.1530/joe-15-0533.
- Schiaffino, S., and Reggiani, C. (1994) Myosin isoforms in mammalian skeletal muscle, J. Appl. Physiol., 77, 493-501, https://doi.org/10.1152/jappl.1994.77.2.493.
- Schiaffino, S., and Reggiani, C. (2011) Fiber types in mammalian skeletal muscles, Physiol. Rev., 91, 1447-1531, https://doi.org/10.1152/physrev.00031.2010.
- Murgia, M., Toniolo, L., Nagaraj, N., Ciciliot, S., Vindigni, V., Schiaffino, S., Reggiani, C., and Mann, M. (2017) Single muscle fiber proteomics reveals fiber-type-specific features of human muscle aging, Cell Rep., 19, 2396-2409, https://doi.org/10.1016/j.celrep.2017.05.054.
- Murgia, M., Nogara, L., Baraldo, M., Reggiani, C., Mann, M., and Schiaffino, S. (2021) Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study, Skelet. Muscle, 11, 24, https://doi.org/10.1186/s13395-021-00279-0.
- Westwood, F. R., Bigley, A., Randall, K., Marsden, A. M., and Scott, R. C. (2005) Statin-induced muscle necrosis in the rat: distribution, development, and fibre selectivity, Toxicol. Pathol., 33, 246-257, https://doi.org/ 10.1080/01926230590908213.
- Bodié, K., Buck, W. R., Pieh, J., Liguori, M. J., and Popp, A. (2016) Biomarker evaluation of skeletal muscle toxicity following clofibrate administration in rats, Exp. Toxicol. Pathol., 68, 289-299, https://doi.org/10.1016/ j.etp.2016.03.001.
- Sorichter, S., Mair, J., Koller, A., Gebert, W., Rama, D., Calzolari, C., Artner-Dworzak, E., and Puschendorf, B. (1997) Skeletal troponin I as a marker of exercise-induced muscle damage, J. Appl. Physiol., 83, 1076-1082, https:// doi.org/10.1152/jappl.1997.83.4.1076.
- Ciciliot, S., Rossi, A. C., Dyar, K. A., Blaauw, B., and Schiaffino, S. (2013) Muscle type and fiber type specificity in muscle wasting, Int. J. Biochem. Cell Biol., 45, 2191-2199, https://doi.org/10.1016/j.biocel.2013.05.016.
- Zimowska, M., Kasprzycka, P., Bocian, K., Delaney, K., Jung, P., Kuchcinska, K., Kaczmarska, K., Gladysz, D., Streminska, W., and Ciemerych, M. A. (2017) Inflammatory response during slow- and fast-twitch muscle regeneration, Muscle Nerve, 55, 400-409, https://doi.org/10.1002/mus.25246.
- Tosato, M., Marzetti, E., Cesari, M., Savera, G., Miller, R. R., Bernabei, R., Landi, F., and Calvani, R. (2017) Measurement of muscle mass in sarcopenia: from imaging to biochemical markers, Aging Clin. Exp. Res., 29, 19-27, https://doi.org/10.1007/s40520-016-0717-0.
- Mercuri, E., Clements, E., Offiah, A., Pichiecchio, A., Vasco, G., Bianco, F., Berardinelli, A., Manzur, A., Pane, M., Messina, S., Gualandi, F., Ricci, E., Rutherford, M., and Muntoni, F. (2010) Muscle magnetic resonance imaging involvement in muscular dystrophies with rigidity of the spine, Ann. Neurol., 67, 201-208, https://doi.org/10.1002/ana.21846.
- Van De Vlekkert, J., Maas, M., Hoogendijk, J. E., De Visser, M., and Van Schaik, I. N. (2015) Combining MRI and muscle biopsy improves diagnostic accuracy in subacute-onset idiopathic inflammatory myopathy, Muscle Nerve, 51, 253-258, https://doi.org/10.1002/mus.24307.
- Willcocks, R. J., Rooney, W. D., Triplett, W. T., Forbes, S. C., Lott, D. J., Senesac, C. R., Daniels, M. J., Wang, D. J., Harrington, A. T., Tennekoon, G. I., Russman, B. S., Finanger, E. L., Byrne, B. J., Finkel, R. S., Walter, G. A., Sweeney, H. L., and Vandenborne, K. (2016) Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large duchenne muscular dystrophy cohort, Ann. Neurol., 79, 535-547, https://doi.org/10.1002/ana.24599.
- Burakiewicz, J., Sinclair, C. D. J., Fischer, D., Walter, G. A., Kan, H. E., and Hollingsworth, K. G. (2017) Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy, J. Neurol., 264, 2053-2067, https:// doi.org/10.1007/s00415-017-8547-3.
- Krššák, M., Lindeboom, L., Schrauwen-Hinderling, V., Szczepaniak, L. S., Derave, W., Lundbom, J., Befroy, D., Schick, F., Machann, J., Kreis, R., and Boesch, C. (2021) Proton magnetic resonance spectroscopy in skeletal muscle: experts’ consensus recommendations, NMR Biomed., 34, e4266, https://doi.org/10.1002/ nbm.4266.
- Brancaccio, P., Lippi, G., and Maffulli, N. (2010) Biochemical markers of muscular damage, Clin. Chem. Lab. Med., 48, 757-767, https://doi.org/10.1515/cclm.2010.179.
- Goldstein, R. A. (2017) Skeletal muscle injury biomarkers: assay qualification efforts and translation to the clinic, Toxicol. Pathol., 45, 943-951, https://doi.org/10.1177/0192623317738927.
- Burch, P. M., Greg Hall, D., Walker, E. G., Bracken, W., Giovanelli, R., Goldstein, R., Higgs, R. E., King, N. M., Lane, P., Sauer, J. M., Michna, L., Muniappa, N., Pritt, M. L., Vlasakova, K., Watson, D. E., Wescott, D., Zabka, T. S., and Glaab, W. E. (2016) Evaluation of the relative performance of drug-induced skeletal muscle injury biomarkers in rats, Toxicol. Sci., 150, 247-256, https://doi.org/10.1093/toxsci/kfv328.
- Katrukha, I. A. (2013) Human cardiac troponin complex. Structure and functions, Biochemistry (Moscow), 78, 1447-1465, https://doi.org/10.1134/S0006297913130063.
- Sheng, J. J., and Jin, J. P. (2016) TNNI1, TNNI2 and TNNI3: evolution, regulation, and protein structure-function relationships, Gene, 576, 385-394, https://doi.org/10.1016/j.gene.2015.10.052.
- Dhoot, G. K., and Perry, S. V. (1979) Distribution of polymorphic forms of troponin components and tropomyosin in skeletal muscle, Nature, 278, 714-718, https://doi.org/10.1038/278714a0.
- Sasse, S., Brand, N. J., Kyprianou, P., Dhoot, G. K., Wade, R., Arai, M., Periasamy, M., Yacoub, M. H., and Barton, P. J. (1993) Troponin I gene expression during human cardiac development and in end-stage heart failure, Circ. Res., 72, 932-938, https://doi.org/10.1161/01.res.72.5.932.
- Bodor, G. S., Porterfield, D., Voss, E. M., Smith, S., and Apple, F. S. (1995) Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue, Clin. Chem., 41, 1710-1715.
- Dellow, K. A., Bhavsar, P. K., Brand, N. J., and Barton, P. J. (2001) Identification of novel, cardiac-restricted transcription factors binding to a CACC-box within the human cardiac troponin I promoter, Cardiovasc. Res., 50, 24-33, https://doi.org/10.1016/s0008-6363(01)00204-8.
- Filatov, V. L., Katrukha, A. G., Bulargina, T. V., and Gusev, N. B. (1999) Troponin: structure, properties, and mechanism of functioning, Biochemistry (Moscow), 64, 969-985.
- Gomes, A. V., Potter, J. D., and Szczesna-Cordary, D. (2002) The role of troponins in muscle contraction, IUBMB Life, 54, 323-333, https://doi.org/10.1080/15216540216037.
- Vinogradova, M. V., Stone, D. B., Malanina, G. G., Karatzaferi, C., Cooke, R., Mendelson, R. A., and Fletterick, R. J. (2005) Ca2+-regulated structural changes in troponin, Proc. Natl. Acad. Sci. USA, 102, 5038-5043, https:// doi.org/10.1073/pnas.0408882102.
- Takeda, S., Yamashita, A., Maeda, K., and Maéda, Y. (2003) Structure of the core domain of human cardiac troponin in the Ca2+-saturated form, Nature, 424, 35-41, https://doi.org/10.1038/nature01780.
- Howarth, J. W., Meller, J., Solaro, R. J., Trewhella, J., and Rosevear, P. R. (2007) Phosphorylation-dependent conformational transition of the cardiac specific N-extension of troponin I in cardiac troponin, J. Mol. Biol., 373, 706-722, https://doi.org/10.1016/j.jmb.2007.08.035.
- Blumenschein, T. M., Stone, D. B., Fletterick, R. J., Mendelson, R. A., and Sykes, B. D. (2006) Dynamics of the C-terminal region of TnI in the troponin complex in solution, Biophys. J., 90, 2436-2444, https://doi.org/10.1529/biophysj.105.076216.
- Julien, O., Mercier, P., Allen, C. N., Fisette, O., Ramos, C. H., Lague, P., Blumenschein, T. M., and Sykes, B. D. (2011) Is there nascent structure in the intrinsically disordered region of troponin I? Proteins, 79, 1240-1250, https://doi.org/10.1002/prot.22959.
- King, W. A., Stone, D. B., Timmins, P. A., Narayanan, T., von Brasch, A. A., Mendelson, R. A., and Curmi, P. M. (2005) Solution structure of the chicken skeletal muscle troponin complex via small-angle neutron and X-ray scattering, J. Mol. Biol., 45, 797-815, https://doi.org/10.1016/j.jmb.2004.10.090.
- Murakami, K., Yumoto, F., Ohki, S. Y., Yasunaga, T., Tanokura, M., and Wakabayashi, T. (2005) Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin, J. Mol. Biol., 352, 178-201, https://doi.org/10.1016/j.jmb.2005.06.067.
- Wang, H., Chalovich, J. M., and Marriott, G. (2012) Structural dynamics of troponin I during Ca2+-activation of cardiac thin filaments: a multi-site Förster resonance energy transfer study, PLoS One, 7, e50420, https:// doi.org/10.1371/journal.pone.0050420.
- Zhou, Z., Li, K. L., Rieck, D., Ouyang, Y., Chandra, M., and Dong, W. J. (2012) Structural dynamics of C-domain of cardiac troponin I protein in reconstituted thin filament, J. Biol. Chem., 87, 7661-7674, https://doi.org/10.1074/jbc.M111.281600.
- Galinska-Rakoczy, A., Engel, P., Xu, C., Jung, H., Craig, R., Tobacman, L. S., and Lehman, W. (2008) Structural basis for the regulation of muscle contraction by troponin and tropomyosin, J. Mol. Biol., 379, 929-935, https://doi.org/10.1016/j.jmb.2008.04.062.
- Galinska, A., Hatch, V., Craig, R., Murphy, A. M., Van Eyk, J. E., Wang, C. L., Lehman, W., and Foster, D. B. (2010) The C terminus of cardiac troponin I stabilizes the Ca2+-activated state of tropomyosin on actin filaments, Circ. Res., 106, 705-711, https://doi.org/10.1161/CIRCRESAHA.109.210047.
- Saggin, L., Gorza, L., Ausoni, S., and Schiaffino, S. (1990) Cardiac troponin T in developing, regenerating and denervated rat skeletal muscle, Development, 110, 547-554, https://doi.org/10.1242/dev.110.2.547.
- Anderson, P. A., Malouf, N. N., Oakeley, A. E., Pagani, E. D., and Allen, P. D. (1991) Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle, Circ. Res., 69, 1226-1233, https://doi.org/10.1161/01.res.69.5.1226.
- Perry, S. V. (1998) Troponin T: genetics, properties and function, J. Muscle Res. Cell Motil., 19, 575-602, https://doi.org/10.1023/a:1005397501968.
- Jin, J. P., and Chong, S. M. (2010) Localization of the two tropomyosin-binding sites of troponin T, Arch. Biochem. Biophys., 500, 144-150, https://doi.org/10.1016/j.abb.2010.06.001.
- Wei, B., and Jin, J. P. (2016) TNNT1, TNNT2, and TNNT3: isoform genes, regulation, and structure-function relationships, Gene, 582, 1-13, https://doi.org/10.1016/j.gene.2016.01.006.
- Marston, S., and Zamora, J. E. (2020) Troponin structure and function: a view of recent progress, J. Muscle Res. Cell Motil., 41, 71-89, https://doi.org/10.1007/s10974-019-09513-1.
- Morris, E. P., and Lehrer, S. S. (1984) Troponin-tropomyosin interactions. Fluorescence studies of the binding of troponin, troponin T, and chymotryptic troponin T fragments to specifically labeled tropomyosin, Biochemistry, 23, 2214-2220, https://doi.org/10.1021/bi00305a018.
- Tanokura, M., Tawada, Y., Ono, A., and Ohtsuki, I. (1983) Chymotryptic subfragments of troponin T from rabbit skeletal muscle. Interaction with tropomyosin, troponin I and troponin C, J. Biochem., 93, 331-337, https:// doi.org/10.1093/oxfordjournals.jbchem.a134185.
- Franklin, A. J., Baxley, T., Kobayashi, T., and Chalovich, J. M. (2012) The C-terminus of troponin T is essential for maintaining the inactive state of regulated actin, Biophys. J., 102, 2536-2544, https://doi.org/10.1016/ j.bpj.2012.04.037.
- Oda, T., Yanagisawa, H., and Wakabayashi, T. (2020) Cryo-EM structures of cardiac thin filaments reveal the 3D architecture of troponin, J. Struct. Biol., 209, 107450, https://doi.org/10.1016/j.jsb.2020.107450.
- Yamada, Y., Namba, K., and Fujii, T. (2020) Cardiac muscle thin filament structures reveal calcium regulatory mechanism, Nat. Commun., 11, 153, https://doi.org/10.1038/s41467-019-14008-1.
- Risi, C. M., Pepper, I., Belknap, B., Landim-Vieira, M., White, H. D., Dryden, K., Pinto, J. R., Chase, P. B., and Galkin, V. E. (2021) The structure of the native cardiac thin filament at systolic Ca2+ levels, Proc. Natl. Acad. Sci. USA, 118, https://doi.org/10.1073/pnas.2024288118.
- Wang, Z., Grange, M., Pospich, S., Wagner, T., Kho, A. L., Gautel, M., and Raunser, S. (2022) Structures from intact myofibrils reveal mechanism of thin filament regulation through nebulin, Science, 375, eabn1934, https:// doi.org/10.1126/science.abn1934.
- Briggs, M. M., Maready, M., Schmidt, J. M., and Schachat, F. (1994) Identification of a fetal exon in the human fast troponin T gene, FEBS Lett., 350, 37-40, https://doi.org/10.1016/0014-5793(94)00729-2.
- Wilkinson, J. M., Moir, A. J., and Waterfield, M. D. (1984) The expression of multiple forms of troponin T in chicken-fast-skeletal muscle may result from differential splicing of a single gene, Eur. J. Biochem., 143, 47-56, https://doi.org/10.1111/j.1432-1033.1984.tb08337.x.
- Briggs, M. M., and Schachat, F. (1993) Origin of fetal troponin T: developmentally regulated splicing of a new exon in the fast troponin T gene, Dev. Biol., 158, 503-509, https://doi.org/10.1006/dbio.1993.1208.
- Medford, R. M., Nguyen, H. T., Destree, A. T., Summers, E., and Nadal-Ginard, B. (1984) A novel mechanism of alternative RNA splicing for the developmentally regulated generation of troponin T isoforms from a single gene, Cell, 38, 409-421, https://doi.org/10.1016/0092-8674(84)90496-3.
- Wang, J., and Jin, J. P. (1997) Primary structure and developmental acidic to basic transition of 13 alternatively spliced mouse fast skeletal muscle troponin T isoforms, Gene, 193, 105-114, https://doi.org/10.1016/ s0378-1119(97)00100-5.
- Wang, J., and Jin, J. P. (1998) Conformational modulation of troponin T by configuration of the NH2-terminal variable region and functional effects, Biochemistry, 37, 14519-14528, https://doi.org/10.1021/bi9812322.
- Moore, G. E., Briggs, M. M., and Schachat, F. H. (1987) Patterns of troponin T expression in mammalian fast, slow and promiscuous muscle fibres, J. Muscle Res. Cell Motil., 8, 13-22, https://doi.org/10.1007/ BF01767260.
- Briggs, M. M., McGinnis, H. D., and Schachat, F. (1990) Transitions from fetal to fast troponin T isoforms are coordinated with changes in tropomyosin and alpha-actinin isoforms in developing rabbit skeletal muscle, Dev. Biol., 140, 253-260, https://doi.org/10.1016/0012-1606(90)90075-t.
- Melby, J. A., Jin, Y., Lin, Z., Tucholski, T., Wu, Z., Gregorich, Z. R., Diffee, G. M., and Ge, Y. (2020) Top-down proteomics reveals myofilament proteoform heterogeneity among various rat skeletal muscle tissues, J. Proteome Res., 19, 446-454, https://doi.org/10.1021/acs.jproteome.9b00623.
- Jin, Y., Diffee, G. M., Colman, R. J., Anderson, R. M., and Ge, Y. (2019) Top-down mass spectrometry of sarcomeric protein post-translational modifications from non-human primate skeletal muscle, J. Am. Soc. Mass Spectrom., 30, 2460-2469, https://doi.org/10.1007/s13361-019-02139-0.
- Chen, Y. C., Sumandea, M. P., Larsson, L., Moss, R. L., and Ge, Y. (2015) Dissecting human skeletal muscle troponin proteoforms by top-down mass spectrometry, J. Muscle Res. Cell Motil., 36, 169-181, https://doi.org/10.1007/s10974-015-9404-6.
- Jin, J. P., Chen, A., and Huang, Q. Q. (1998) Three alternatively spliced mouse slow skeletal muscle troponin T isoforms: conserved primary structure and regulated expression during postnatal development, Gene, 214, 121-129, https://doi.org/10.1016/s0378-1119(98)00214-5.
- Huang, Q. Q., Chen, A., and Jin, J. P. (1999) Genomic sequence and structural organization of mouse slow skeletal muscle troponin T gene, Gene, 229, 1-10, https://doi.org/10.1016/s0378-1119(99)00051-7.
- Gahlmann, R., Troutt, A. B., Wade, R. P., Gunning, P., and Kedes, L. (1987) Alternative splicing generates variants in important functional domains of human slow skeletal troponin T, J. Biol. Chem., 262, 16122-16126.
- Samson, F., Mesnard, L., Mihovilovic, M., Potter, T. G., Mercadier, J. J., Roses, A. D., and Gilbert, J. R. (1994) A new human slow skeletal troponin T (TnTs) mRNA isoform derived from alternative splicing of a single gene, Biochem. Biophys. Res. Commun., 199, 841-847, https://doi.org/10.1006/bbrc.1994.
- Gahlmann, R., Wade, R., Gunning, P., and Kedes, L. (1988) Differential expression of slow and fast skeletal muscle troponin C. Slow skeletal muscle troponin C is expressed in human fibroblasts, J. Mol. Biol., 201, 379-391, https://doi.org/10.1016/0022-2836(88)90145-3.
- Houdusse, A., Love, M. L., Dominguez, R., Grabarek, Z., and Cohen, C. (1997) Structures of four Ca2+-bound troponin C at 2.0 A resolution: further insights into the Ca2+-switch in the calmodulin superfamily, Structure, 5, 1695-1711, https://doi.org/10.1016/s0969-2126(97)00315-8.
- Mercier, P., Ferguson, R. E., Irving, M., Corrie, J. E., Trentham, D. R., and Sykes, B. D. (2003) NMR structure of a bifunctional rhodamine labeled N-domain of troponin C complexed with the regulatory “switch” peptide from troponin I: implications for in situ fluorescence studies in muscle fibers, Biochemistry, 42, 4333-4348, https://doi.org/10.1021/bi027041n.
- Potter, J. D., and Gergely, J. (1974) Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction, Biochemistry, 13, 2697-2703, https://doi.org/10.1021/bi00710a007.
- Sia, S. K., Li, M. X., Spyracopoulos, L., Gagné, S. M., Liu, W., Putkey, J. A., and Sykes, B. D. (1997) Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain, J. Biol. Chem., 272, 18216-18221, https://doi.org/10.1074/jbc.272.29.18216.
- Morimoto, S., Harada, K., and Ohtsuki, I. (1999) Roles of troponin isoforms in pH dependence of contraction in rabbit fast and slow skeletal and cardiac muscles, J. Biochem., 126, 121-129, https://doi.org/10.1093/oxfordjournals.jbchem.a022412.
- Brotto, M. A., Biesiadecki, B. J., Brotto, L. S., Nosek, T. M., and Jin, J. P. (2006) Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility, Am. J. Physiol. Cell Physiol., 290, C567-576, https://doi.org/10.1152/ajpcell.00422.2005.
- Piroddi, N., Tesi, C., Pellegrino, M. A., Tobacman, L. S., Homsher, E., and Poggesi, C. (2003) Contractile effects of the exchange of cardiac troponin for fast skeletal troponin in rabbit psoas single myofibrils, J. Physiol., 552, 917-931, https://doi.org/10.1113/jphysiol.2003.051615.
- Yan, G. X., and Kleber, A. G. (1992) Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle, Circ. Res., 71, 460-470, https://doi.org/10.1161/01.res.71.2.460.
- Jennings, R. B., and Reimer, K. A. (1991) The cell biology of acute myocardial ischemia, Annu. Rev. Med., 42, 225-246, https://doi.org/10.1146/annurev.me.42.020191.001301.
- Sahlin, K., Harris, R. C., Nylind, B., and Hultman, E. (1976) Lactate content and pH in muscle obtained after dynamic exercise, Pflugers Arch., 367, 143-149, https://doi.org/10.1007/bf00585150.
- Bangsbo, J., Madsen, K., Kiens, B., and Richter, E. A. (1996) Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man, J. Physiol., 495 (Pt 2), 587-596, https://doi.org/10.1113/jphysiol. 1996.sp021618.
- Allen, D. G., Lamb, G. D., and Westerblad, H. (2008) Skeletal muscle fatigue: cellular mechanisms, Physiol. Rev., 88, 287-332, https://doi.org/10.1152/physrev.00015.2007.
- Donaldson, S. K., Hermansen, L., and Bolles, L. (1978) Differential, direct effects of H+ on Ca2+-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits, Pflugers Arch., 376, 55-65, https://doi.org/10.1007/bf00585248.
- Metzger, J. M., Parmacek, M. S., Barr, E., Pasyk, K., Lin, W. I., Cochrane, K. L., Field, L. J., and Leiden, J. M. (1993) Skeletal troponin C reduces contractile sensitivity to acidosis in cardiac myocytes from transgenic mice, Proc. Natl. Acad. Sci. USA, 90, 9036-9040, https://doi.org/10.1073/pnas.90.19.9036.
- Metzger, J. M. (1996) Effects of troponin C isoforms on pH sensitivity of contraction in mammalian fast and slow skeletal muscle fibres, J. Physiol., 492 (Pt 1), 163-172, https://doi.org/10.1113/jphysiol.1996.sp021298.
- Solaro, R. J., Kumar, P., Blanchard, E. M., and Martin, A. F. (1986) Differential effects of pH on calcium activation of myofilaments of adult and perinatal dog hearts. Evidence for developmental differences in thin filament regulation, Circ. Res., 58, 721-729, https://doi.org/10.1161/01.res.58.5.721.
- Wolska, B. M., Vijayan, K., Arteaga, G. M., Konhilas, J. P., Phillips, R. M., Kim, R., Naya, T., Leiden, J. M., Martin, A. F., de Tombe, P. P., and Solaro, R. J. (2001) Expression of slow skeletal troponin I in adult transgenic mouse heart muscle reduces the force decline observed during acidic conditions, J. Physiol., 536, 863-870, https:// doi.org/10.1111/j.1469-7793.2001.00863.x.
- Robertson, I. M., Holmes, P. C., Li, M. X., Pineda-Sanabria, S. E., Baryshnikova, O. K., and Sykes, B. D. (2012) Elucidation of isoform-dependent pH sensitivity of troponin i by NMR spectroscopy, J. Biol. Chem., 287, 4996-5007, https://doi.org/10.1074/jbc.M111.301499.
- Pineda-Sanabria, S. E., Robertson, I. M., Li, M. X., and Sykes, B. D. (2013) Interaction between the regulatory domain of cardiac troponin C and the acidosis-resistant cardiac troponin I A162H, Cardiovasc. Res., 97, 481-489, https://doi.org/10.1093/cvr/cvs348.
- Robertson, I. M., Pineda-Sanabria, S. E., Holmes, P. C., and Sykes, B. D. (2014) Conformation of the critical pH sensitive region of troponin depends upon a single residue in troponin I, Arch. Biochem. Biophys., 552-553, 40-49, https://doi.org/10.1016/j.abb.2013.12.003.
- Pineda-Sanabria, S. E., Robertson, I. M., and Sykes, B. D. (2015) Structure and dynamics of the acidosis-resistant A162H mutant of the switch region of troponin I bound to the regulatory domain of troponin C, Biochemistry, 54, 3583-3593, https://doi.org/10.1021/acs.biochem.5b00178.
- Ogut, O., and Jin, J. P. (1998) Developmentally regulated, alternative RNA splicing-generated pectoral muscle-specific troponin T isoforms and role of the NH2-terminal hypervariable region in the tolerance to acidosis, J. Biol. Chem., 273, 27858-27866, https://doi.org/10.1074/jbc.273.43.27858.
- Ogut, O., Granzier, H., and Jin, J. P. (1999) Acidic and basic troponin T isoforms in mature fast-twitch skeletal muscle and effect on contractility, Am. J. Physiol., 276, C1162-1170, https://doi.org/10.1152/ajpcell.1999. 276.5.C1162.
- Nosek, T. M., Brotto, M. A., and Jin, J. P. (2004) Troponin T isoforms alter the tolerance of transgenic mouse cardiac muscle to acidosis, Arch. Biochem. Biophys., 430, 178-184, https://doi.org/10.1016/j.abb.2004.07.014.
- Shen, J., Li, Y., Gu, H., Xia, F., and Zuo, X. (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions, Chem. Rev., 114, 7631-7677, https://doi.org/ 10.1021/cr300248x.
- Larue, C., Defacque-Lacquement, H., Calzolari, C., Le Nguyen, D., and Pau, B. (1992) New monoclonal antibodies as probes for human cardiac troponin I: epitopic analysis with synthetic peptides, Mol. Immunol., 29, 271-278, https://doi.org/10.1016/0161-5890(92)90109-b.
- Larue, C., Calzolari, C., Bertinchant, J. P., Leclercq, F., Grolleau, R., and Pau, B. (1993) Cardiac-specific immunoenzymometric assay of troponin I in the early phase of acute myocardial infarction, Clin. Chem., 39, 972-979.
- Rama, D., Margaritis, I., Orsetti, A., Marconnet, P., Gros, P., Larue, C., Trinquier, S., Pau, B., and Calzolari, C. (1996) Troponin I immunoenzymometric assays for detection of muscle damage applied to monitoring a triathlon, Clin. Chem., 42, 2033-2035.
- Onuoha, G. N., Alpar, E. K., Dean, B., Tidman, J., Rama, D., Laprade, M., and Pau, B. (2001) Skeletal troponin-I release in orthopedic and soft tissue injuries, J. Orthop. Sci., 6, 11-15, https://doi.org/10.1007/ s007760170018.
- Bamberg, K., Mehtälä, L., Arola, O., Laitinen, S., Nordling, P., Strandberg, M., Strandberg, N., Paltta, J., Mali, M., Espinosa-Ortega, F., Pirilä, L., Lundberg, I. E., Savukoski, T., and Pettersson, K. (2020) Evaluation of a new skeletal troponin I assay in patients with idiopathic inflammatory myopathies, J. Appl. Lab. Med., 5, 320-331, https:// doi.org/10.1093/jalm/jfz016.
- Sun, D., Hamlin, D., Butterfield, A., Watson, D. E., and Smith, H. W. (2010) Electrochemiluminescent immunoassay for rat skeletal troponin I (Tnni2) in serum, J. Pharmacol. Toxicol. Methods, 61, 52-58, https://doi.org/ 10.1016/j.vascn.2009.09.002.
- Simpson, J. A., Labugger, R., Hesketh, G. G., D’Arsigny, C., O’Donnell, D., Matsumoto, N., Collier, C. P., Iscoe, S., and Van Eyk, J. E. (2002) Differential detection of skeletal troponin I isoforms in serum of a patient with rhabdomyolysis: markers of muscle injury? Clin. Chem., 48, 1112-1114.
- Simpson, J. A., Labugger, R., Collier, C., Brison, R. J., Iscoe, S., and Van Eyk, J. E. (2005) Fast and slow skeletal troponin I in serum from patients with various skeletal muscle disorders: a pilot study, Clin. Chem., 51, 966-972, https://doi.org/10.1373/clinchem.2004.042671.
- Takahashi, M., Lee, L., Shi, Q., Gawad, Y., and Jackowski, G. (1996) Use of enzyme immunoassay for measurement of skeletal troponin-I utilizing isoform-specific monoclonal antibodies, Clin. Biochem., 29, 301-308, https://doi.org/10.1016/0009-9120(96)00016-1.
- Sorichter, S., Mair, J., Koller, A., Calzolari, C., Huonker, M., Pau, B., and Puschendorf, B. (2001) Release of muscle proteins after downhill running in male and female subjects, Scand. J. Med. Sci. Sports, 11, 28-32, https://doi.org/ 10.1034/j.1600-0838.2001.011001028.x.
- Chapman, D. W., Simpson, J. A., Iscoe, S., Robins, T., and Nosaka, K. (2013) Changes in serum fast and slow skeletal troponin I concentration following maximal eccentric contractions, J. Sci. Med. Sport, 16, 82-85, https://doi.org/10.1016/j.jsams.2012.05.006.
- Chen, T. C., Liu, H. W., Russell, A., Barthel, B. L., Tseng, K. W., Huang, M. J., Chou, T. Y., and Nosaka, K. (2020) Large increases in plasma fast skeletal muscle troponin I after whole-body eccentric exercises, J. Sci. Med. Sport, 23, 776-781, https://doi.org/10.1016/j.jsams.2020.01.011.
- Kiely, P. D., Bruckner, F. E., Nisbet, J. A., and Daghir, A. (2000) Serum skeletal troponin I in inflammatory muscle disease: relation to creatine kinase, CKMB and cardiac troponin I, Ann. Rheum. Dis., 59, 750-751, https:// doi.org/10.1136/ard.59.9.750.
- Vassallo, J. D., Janovitz, E. B., Wescott, D. M., Chadwick, C., Lowe-Krentz, L. J., and Lehman-McKeeman, L. D. (2009) Biomarkers of drug-induced skeletal muscle injury in the rat: troponin I and myoglobin, Toxicol. Sci., 111, 402-412, https://doi.org/10.1093/toxsci/kfp166.
- Tonomura, Y., Matsushima, S., Kashiwagi, E., Fujisawa, K., Takagi, S., Nishimura, Y., Fukushima, R., Torii, M., and Matsubara, M. (2012) Biomarker panel of cardiac and skeletal muscle troponins, fatty acid binding protein 3 and myosin light chain 3 for the accurate diagnosis of cardiotoxicity and musculoskeletal toxicity in rats, Toxicology, 302, 179-189, https://doi.org/10.1016/j.tox.2012.07.012.
- Madden, L., Juhas, M., Kraus, W. E., Truskey, G. A., and Bursac, N. (2015) Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs, Elife, 4, e04885, https://doi.org/10.7554/ eLife.04885.
- Khodabukus, A., Kaza, A., Wang, J., Prabhu, N., Goldstein, R., Vaidya, V. S., and Bursac, N. (2020) Tissue-engineered human myobundle system as a platform for evaluation of skeletal muscle injury biomarkers, Toxicol. Sci., 176, 124-136, https://doi.org/10.1093/toxsci/kfaa049.
- Barthel, B. L., Cox, D., Barbieri, M., Ziemba, M., Straub, V., Hoffman, E. P., and Russell, A. J. (2021) Elevation of fast but not slow troponin I in the circulation of patients with Becker and Duchenne muscular dystrophy, Muscle Nerve, 64, 43-49, https://doi.org/10.1002/mus.27222.
- Traa, W. A., Strijkers, G. J., Bader, D. L., and Oomens, C. W. J. (2019) Myoglobin and troponin concentrations are increased in early stage deep tissue injury, J. Mech. Behav. Biomed. Mater., 92, 50-57, https://doi.org/10.1016/j.jmbbm.2018.12.026.
- Perry, S. V., and Cole, H. A. (1974) Phosphorylation of troponin and the effects of interactions between the components of the complex, Biochem. J., 141, 733-743, https://doi.org/10.1042/bj1410733.
- Moir, A. J., Wilkinson, J. M., and Perry, S. V. (1974) The phosphorylation sites of troponin I from white skeletal muscle of the rabbit, FEBS Lett., 42, 253-256, https://doi.org/0014-5793(74)80739-8.
- Moir, A. J., Cole, H. A., and Perry, S. V. (1977) The phosphorylation sites of troponin T from white skeletal muscle and the effects of interaction with troponin C on their phosphorylation by phosphorylase kinase, Biochem. J., 161, 371-382, https://doi.org/10.1042/bj1610371.
- Mazzei, G. J., and Kuo, J. F. (1984) Phosphorylation of skeletal-muscle troponin I and troponin T by phospholipid-sensitive Ca2+-dependent protein kinase and its inhibition by troponin C and tropomyosin, Biochem. J., 218, 361-369, https://doi.org/10.1042/bj2180361.
- Sancho Solis, R., Ge, Y., and Walker, J. W. (2011) A preferred AMPK phosphorylation site adjacent to the inhibitory loop of cardiac and skeletal troponin I, Protein Sci., 20, 894-907, https://doi.org/10.1002/pro.623.
- Cole, H. A., and Perry, S. V. (1975) The phosphorylation of troponin I from cardiac muscle, Biochem. J., 149, 525-533, https://doi.org/10.1042/bj1490525.
- Gusev, N. B., Dobrovol’skii, A. B., and Severin, S. E. (1978) Skeletal muscle troponin and phosphorylation: a site of troponin T, that is phosphorylated by specific protein kinase [in Russian], Biokhimiia, 43, 365-372.
- Risnik, V. V., Dobrovolskii, A. B., Gusev, N. B., and Severin, S. E. (1980) Phosphorylase kinase phosphorylation of skeletal-muscle troponin T, Biochem. J., 191, 851-854, https://doi.org/10.1042/bj1910851.
- Gusev, N. B., Dobrovolskii, A. B., and Severin, S. E. (1980) Isolation and some properties of troponin T kinase from rabbit skeletal muscle, Biochem J, 189, 219-226, https://doi.org/10.1042/bj1890219.
- Zemskova, M. A., Shur, S. A., Skolysheva, L. K., and Vul’fson, P. L. (1991) Interaction of phosphorylase kinase with thin filament proteins of rabbit skeletal muscles [in Russian], Biokhimiia, 56, 100-108.
- Katrukha, I. A., and Gusev, N. B. (2013) Enigmas of cardiac troponin T phosphorylation, J. Mol. Cell Cardiol., 65, 156-158, https://doi.org/10.1016/j.yjmcc.2013.09.017.
- Gusev, N. B., Barskaya, N. V., Verin, A. D., Duzhenkova, I. V., Khuchua, Z. A., and Zheltova, A. O. (1983) Some properties of cardiac troponin T structure, Biochem. J., 213, 123-129, https://doi.org/10.1042/bj2130123.
- Zhang, J., Guy, M. J., Norman, H. S., Chen, Y. C., Xu, Q., Dong, X., Guner, H., Wang, S., Kohmoto, T., Young, K. H., Moss, R. L., and Ge, Y. (2011) Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure, J. Proteome Res., 10, 4054-4065, https://doi.org/10.1021/pr200258m.
- Lamb, G. D., and Westerblad, H. (2011) Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle, J. Physiol., 589, 2119-2127, https://doi.org/10.1113/jphysiol.2010.199059.
- Mollica, J. P., Dutka, T. L., Merry, T. L., Lamboley, C. R., McConell, G. K., McKenna, M. J., Murphy, R. M., and Lamb, G. D. (2012) S-glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans, J. Physiol., 590, 1443-1463, https://doi.org/10.1113/jphysiol.2011.224535.
- Dutka, T. L., Mollica, J. P., Lamboley, C. R., Weerakkody, V. C., Greening, D. W., Posterino, G. S., Murphy, R. M., and Lamb, G. D. (2017) S-nitrosylation and S-glutathionylation of Cys134 on troponin I have opposing competitive actions on Ca2+ sensitivity in rat fast-twitch muscle fibers, Am. J. Physiol. Cell Physiol., 312, C316-C327, https://doi.org/10.1152/ajpcell.00334.2016.
- Katrukha, A. G., Bereznikova, A. V., Filatov, V. L., Esakova, T. V., Kolosova, O. V., Pettersson, K., Lovgren, T., Bulargina, T. V., Trifonov, I. R., Gratsiansky, N. A., Pulkki, K., Voipio-Pulkki, L. M., and Gusev, N. B. (1998) Degradation of cardiac troponin I: implication for reliable immunodetection, Clin. Chem., 44, 2433-2440.
- Katrukha, I. A., Kogan, A. E., Vylegzhanina, A. V., Kharitonov, A. V., Tamm, N. N., Filatov, V. L., Bereznikova, A. V., Koshkina, E. V., and Katrukha, A. G. (2018) Full-size cardiac troponin I and its proteolytic fragments in blood of patients with acute myocardial infarction: antibody selection for assay development, Clin. Chem., 64, 1104-1112, https://doi.org/10.1373/clinchem.2017.286211.
- Di Lisa, F., De Tullio, R., Salamino, F., Barbato, R., Melloni, E., Siliprandi, N., Schiaffino, S., and Pontremoli, S. (1995) Specific degradation of troponin T and I by mu-calpain and its modulation by substrate phosphorylation, Biochem. J., 308 (Pt 1), 57-61, https://doi.org/10.1042/bj3080057.
- Wang, W., Schulze, C. J., Suarez-Pinzon, W. L., Dyck, J. R., Sawicki, G., and Schulz, R. (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury, Circulation, 106, 1543-1549, https://doi.org/10.1161/01.cir.0000028818.33488.7b.
- Gao, W. D., Atar, D., Liu, Y., Perez, N. G., Murphy, A. M., and Marban, E. (1997) Role of troponin I proteolysis in the pathogenesis of stunned myocardium, Circ. Res., 80, 393-399.
- Mahmud, Z., Zahran, S., Liu, P. B., Reiz, B., Chan, B. Y. H., Roczkowsky, A., McCartney, C. E., Davies, P. L., Li, L., Schulz, R., and Hwang, P. M. (2019) Structure and proteolytic susceptibility of the inhibitory C-terminal tail of cardiac troponin I, Biochim. Biophys. Acta Gen. Subj., 1863, 661-671, https://doi.org/10.1016/j.bbagen.2019.01.008.
- Katrukha, I. A., and Katrukha, A. G. (2021) Myocardial injury and the release of troponins I and T in the blood of patients, Clin. Chem., 67, 124-130, https://doi.org/10.1093/clinchem/hvaa281.
- Communal, C., Sumandea, M., de Tombe, P., Narula, J., Solaro, R. J., and Hajjar, R. J. (2002) Functional consequences of caspase activation in cardiac myocytes, Proc. Natl. Acad. Sci. USA, 99, 6252-6256, https://doi.org/10.1073/pnas.092022999.
- Zhang, Z., Biesiadecki, B. J., and Jin, J. P. (2006) Selective deletion of the NH2-terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated mu-calpain cleavage, Biochemistry, 45, 11681-11694, https://doi.org/10.1021/bi060273s.
- Katrukha, I. A., Riabkova, N. S., Kogan, A. E., Vylegzhanina, A. V., Mukharyamova, K. S., Bogomolova, A. P., Zabolotskii, A. I., Koshkina, E. V., Bereznikova, A. V., and Katrukha, A. G. (2023) Fragmentation of human cardiac troponin T after acute myocardial infarction, Clin. Chim. Acta, 542, 117281, https://doi.org/10.1016/j.cca. 2023.117281.
- Feng, H. Z., Wang, Q., Reiter, R. S., Lin, J. L., Lin, J. J., and Jin, J. P. (2013) Localization and function of Xinα in mouse skeletal muscle, Am. J. Physiol. Cell Physiol., 304, C1002-1012, https://doi.org/10.1152/ajpcell.00005.2013.
- Katrukha, A. G., Bereznikova, A. V., Esakova, T. V., Pettersson, K., Lovgren, T., Severina, M. E., Pulkki, K., Vuopio-Pulkki, L. M., and Gusev, N. B. (1997) Troponin I is released in bloodstream of patients with acute myocardial infarction not in free form but as complex, Clin. Chem., 43, 1379-1385.
- Vylegzhanina, A. V., Kogan, A. E., Katrukha, I. A., Koshkina, E. V., Bereznikova, A. V., Filatov, V. L., Bloshchitsyna, M. N., Bogomolova, A. P., and Katrukha, A. G. (2019) Full-size and partially truncated cardiac troponin complexes in the blood of patients with acute myocardial infarction, Clin. Chem., 65, 882-892, https://doi.org/10.1373/clinchem.2018.301127.
- Adamczyk, M., Brashear, R. J., and Mattingly, P. G. (2009) Circulating cardiac troponin-I autoantibodies in human plasma and serum, Ann. NY Acad. Sci., 1173, 67-74, https://doi.org/10.1111/j.1749-6632.2009.04617.x.
- Vylegzhanina, A. V., Kogan, A. E., Katrukha, I. A., Antipova, O. V., Kara, A. N., Bereznikova, A. V., Koshkina, E. V., and Katrukha, A. G. (2017) Anti-cardiac troponin autoantibodies are specific to the conformational epitopes formed by cardiac troponin I and troponin T in the ternary troponin complex, Clin. Chem., 63, 343-350, https://doi.org/10.1373/clinchem.2016.261602.
- Sung, S. S., Brassington, A. M., Grannatt, K., Rutherford, A., Whitby, F. G., Krakowiak, P. A., Jorde, L. B., Carey, J. C., and Bamshad, M. (2003) Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes, Am. J. Hum. Genet., 72, 681-690, https://doi.org/10.1086/368294.
- Kimber, E., Tajsharghi, H., Kroksmark, A. K., Oldfors, A., and Tulinius, M. (2006) A mutation in the fast skeletal muscle troponin I gene causes myopathy and distal arthrogryposis, Neurology, 67, 597-601, https:// doi.org/10.1212/01.wnl.0000230168.05328.f4.
- Jiang, M., Zhao, X., Han, W., Bian, C., Li, X., Wang, G., Ao, Y., Li, Y., Yi, D., Zhe, Y., Lo, W. H., Zhang, X., and Li, J. (2006) A novel deletion in TNNI2 causes distal arthrogryposis in a large Chinese family with marked variability of expression, Hum. Genet., 120, 238-242, https://doi.org/10.1007/s00439-006-0183-4.
- Shrimpton, A. E., and Hoo, J. J. (2006) A TNNI2 mutation in a family with distal arthrogryposis type 2B, Eur. J. Med. Genet., 49, 201-206, https://doi.org/10.1016/j.ejmg.2005.06.003.
- Li, X., Jiang, M., Han, W., Zhao, N., Liu, W., Sui, Y., Lu, Y., and Li, J. (2013) A novel TNNI2 mutation causes Freeman-Sheldon syndrome in a Chinese family with an affected adult with only facial contractures, Gene, 527, 630-635, https://doi.org/10.1016/j.gene.2013.06.082.
- Li, Y., Nong, T., Li, X., Li, Z., Lv, H., Xu, H., Li, J., and Zhu, M. (2022) A TNNI2 variant c.525G>T causes distal arthrogryposis in a Chinese family, Mol. Genet. Genomic Med., 10, e2042, https://doi.org/10.1002/mgg3.2042.
- Čulić, V., Miyake, N., Janković, S., Petrović, D., Šimunović, M., Đapić, T., Shiina, M., Ogata, K., and Matsumoto, N. (2016) Distal arthrogryposis with variable clinical expression caused by TNNI2 mutation, Hum. Genome Var., 3, 16035, https://doi.org/10.1038/hgv.2016.35.
- Wang, B., Zheng, Z., Wang, Z., Zhang, X., Yang, H., Cai, H., and Fu, Q. (2016) A novel missense mutation of TNNI2 in a Chinese family cause distal arthrogryposis type 1, Am. J. Med. Genet. A, 170a, 135-141, https://doi.org/ 10.1002/ajmg.a.37391.
- Seyama, R., Uchiyama, Y., Kaneshi, Y., Hamanaka, K., Fujita, A., Tsuchida, N., Koshimizu, E., Misawa, K., Miyatake, S., Mizuguchi, T., Makino, S., Itakura, A., Okamoto, N., and Matsumoto, N. (2023) Distal arthrogryposis in a girl arising from a novel TNNI2 variant inherited from paternal somatic mosaicism, J. Hum. Genet., 68, 363-367, https://doi.org/10.1038/s10038-022-01117-x.
- Nishimori, Y., Iida, A., Ogasawara, M., Okubo, M., Yonenobu, Y., Kinoshita, M., Sugie, K., Noguchi, S., and Nishino, I. (2022) TNNI1 mutated in autosomal dominant proximal arthrogryposis, Neurol. Genet., 8, e649, https://doi.org/10.1212/nxg.0000000000000649.
- Beck, A. E., McMillin, M. J., Gildersleeve, H. I., Kezele, P. R., Shively, K. M., Carey, J. C., Regnier, M., and Bamshad, M. J. (2013) Spectrum of mutations that cause distal arthrogryposis types 1 and 2B, Am. J. Med. Genet. A, 161, 550-555, https://doi.org/10.1002/ajmg.a.35809.
- Desai, D., Stiene, D., Song, T., and Sadayappan, S. (2020) Distal arthrogryposis and lethal congenital contracture syndrome – an overview, Front. Physiol., 11, 689, https://doi.org/10.3389/fphys.2020.00689.
- Shafaattalab, S., Li, A. Y., Lin, E., Stevens, C. M., Dewar, L. J., Lynn, F. C., Sanatani, S., Laksman, Z., Morin, R. D., van Petegem, F., Hove-Madsen, L., Tieleman, D. P., Davis, J. P., and Tibbits, G. F. (2019) In vitro analyses of suspected arrhythmogenic thin filament variants as a cause of sudden cardiac death in infants, Proc. Natl. Acad. Sci. USA, 116, 6969-6974, https://doi.org/10.1073/pnas.1819023116.
- Sung, S. S., Brassington, A. M., Krakowiak, P. A., Carey, J. C., Jorde, L. B., and Bamshad, M. (2003) Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B, Am. J. Hum. Genet., 212-214, https://doi.org/10.1086/376418.
- Daly, S. B., Shah, H., O’Sullivan, J., Anderson, B., Bhaskar, S., Williams, S., Al-Sheqaih, N., Mueed Bidchol, A., Banka, S., Newman, W. G., and Girisha, K. M. (2014) Exome sequencing identifies a dominant TNNT3 mutation in a large family with distal arthrogryposis, Mol. Syndromol., 5, 218-228, https://doi.org/10.1159/000365057.
- Zhao, N., Jiang, M., Han, W., Bian, C., Li, X., Huang, F., Kong, Q., and Li, J. (2011) A novel mutation in TNNT3 associated with Sheldon-Hall syndrome in a Chinese family with vertical talus, Eur. J. Med. Genet., 54, 351-353, https://doi.org/10.1016/j.ejmg.2011.03.002.
- Lu, J., Li, H., Zhang, H., Lin, Z., Xu, C., Xu, X., Hu, L., Luan, Z., Lou, Y., and Tang, S. (2021) The distal arthrogryposis-linked p.R63C variant promotes the stability and nuclear accumulation of TNNT3, J. Clin. Lab. Anal., 35, e24089, https://doi.org/10.1002/jcla.24089.
- Sandaradura, S. A., Bournazos, A., Mallawaarachchi, A., Cummings, B. B., Waddell, L. B., Jones, K. J., Troedson, C., Sudarsanam, A., Nash, B. M., Peters, G. B., Algar, E. M., MacArthur, D. G., North, K. N., Brammah, S., Charlton, A., Laing, N. G., Wilson, M. J., Davis, M. R., and Cooper, S. T. (2018) Nemaline myopathy and distal arthrogryposis associated with an autosomal recessive TNNT3 splice variant, Hum. Mutat., 39, 383-388, https://doi.org/10.1002/humu.23385.
- Johnston, J. J., Kelley, R. I., Crawford, T. O., Morton, D. H., Agarwala, R., Koch, T., Schaffer, A. A., Francomano, C. A., and Biesecker, L. G. (2000) A novel nemaline myopathy in the Amish caused by a mutation in troponin T1, Am. J. Hum. Genet., 67, 814-821, https://doi.org/10.1086/303089.
- Marra, J. D., Engelstad, K. E., Ankala, A., Tanji, K., Dastgir, J., De Vivo, D. C., Coffee, B., and Chiriboga, C. A. (2015) Identification of a novel nemaline myopathy-causing mutation in the troponin T1 (TNNT1) gene: a case outside of the old order Amish, Muscle Nerve, 51, 767-772, https://doi.org/10.1002/mus.24528.
- Van der Pol, W. L., Leijenaar, J. F., Spliet, W. G., Lavrijsen, S. W., Jansen, N. J., Braun, K. P., Mulder, M., Timmers-Raaijmakers, B., Ratsma, K., Dooijes, D., and van Haelst, M. M. (2014) Nemaline myopathy caused byTNNT1 mutations in a Dutch pedigree, Mol. Genet. Genomic Med., 2, 134-137, https://doi.org/10.1002/mgg3.52.
- Abdulhaq, U. N., Daana, M., Dor, T., Fellig, Y., Eylon, S., Schuelke, M., Shaag, A., Elpeleg, O., and Edvardson, S. (2016) Nemaline body myopathy caused by a novel mutation in troponin T1 (TNNT1), Muscle Nerve, 53, 564-569, https://doi.org/10.1002/mus.24885.
- Jin, J. P., Brotto, M. A., Hossain, M. M., Huang, Q. Q., Brotto, L. S., Nosek, T. M., Morton, D. H., and Crawford, T. O. (2003) Truncation by Glu180 nonsense mutation results in complete loss of slow skeletal muscle troponin T in a lethal nemaline myopathy, J. Biol. Chem., 278, 26159-26165, https://doi.org/10.1074/jbc.M303469200.
- Wang, X., Huang, Q. Q., Breckenridge, M. T., Chen, A., Crawford, T. O., Morton, D. H., and Jin, J. P. (2005) Cellular fate of truncated slow skeletal muscle troponin T produced by Glu180 nonsense mutation in amish nemaline myopathy, J. Biol. Chem., 280, 13241-13249, https://doi.org/10.1074/jbc.M413696200.
- Mondal, A., and Jin, J. P. (2016) Protein structure-function relationship at work: learning from myopathy mutations of the slow skeletal muscle isoform of troponin T, Front. Physiol., 7, 449, https://doi.org/10.3389/fphys.2016.00449.
- Van de Locht, M., Donkervoort, S., de Winter, J. M., Conijn, S., Begthel, L., Kusters, B., Mohassel, P., Hu, Y., Medne, L., Quinn, C., Moore, S. A., Foley, A. R., Seo, G., Hwee, D. T., Malik, F. I., Irving, T., Ma, W., Granzier, H. L., Kamsteeg, E. J., Immadisetty, K., et al. (2021) Pathogenic variants in TNNC2 cause congenital myopathy due to an impaired force response to calcium, J. Clin. Invest., 131, https://doi.org/10.1172/jci145700.
- Van de Locht, M., Borsboom, T. C., Winter, J. M., and Ottenheijm, C. A. C. (2021) Troponin variants in congenital myopathies: how they affect skeletal muscle mechanics, Int. J. Mol. Sci., 22, https://doi.org/10.3390/ijms22179187.
- Hoffmann, B., Schmidt-Traub, H., Perrot, A., Osterziel, K. J., and Gessner, R. (2001) First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy, Hum. Mutat., 17, 524, https://doi.org/10.1002/humu.1143.
- Landstrom, A. P., Parvatiyar, M. S., Pinto, J. R., Marquardt, M. L., Bos, J. M., Tester, D. J., Ommen, S. R., Potter, J. D., and Ackerman, M. J. (2008) Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C, J. Mol. Cell Cardiol., 45, 281-288, https://doi.org/10.1016/ j.yjmcc.2008.05.003.
- Chung, W. K., Kitner, C., and Maron, B. J. (2011) Novel frameshift mutation in Troponin C (TNNC1) associated with hypertrophic cardiomyopathy and sudden death, Cardiol. Young, 21, 345-348, https://doi.org/10.1017/S1047951110001927.
- Parvatiyar, M. S., Landstrom, A. P., Figueiredo-Freitas, C., Potter, J. D., Ackerman, M. J., and Pinto, J. R. (2012) A mutation in TNNC1-encoded cardiac troponin C, TNNC1-A31S, predisposes to hypertrophic cardiomyopathy and ventricular fibrillation, J. Biol. Chem., 287, 31845-31855, https://doi.org/10.1074/jbc.M112.377713.
- Caforio, A. L., Rossi, B., Risaliti, R., Siciliano, G., Marchetti, A., Angelini, C., Crea, F., Mariani, M., and Muratorio, A. (1989) Type 1 fiber abnormalities in skeletal muscle of patients with hypertrophic and dilated cardiomyopathy: evidence of subclinical myogenic myopathy, J. Am. Coll. Cardiol., 14, 1464-1473, https://doi.org/10.1016/ 0735-1097(89)90383-5.
- Veltri, T., Landim-Vieira, M., Parvatiyar, M. S., Gonzalez-Martinez, D., Dieseldorff Jones, K. M., Michell, C. A., Dweck, D., Landstrom, A. P., Chase, P. B., and Pinto, J. R. (2017) Hypertrophic cardiomyopathy cardiac troponin C mutations differentially affect slow skeletal and cardiac muscle regulation, Front. Physiol., 8, 221, https:// doi.org/10.3389/fphys.2017.00221.
- Li, M. X., Mercier, P., Hartman, J. J., and Sykes, B. D. (2021) Structural basis of tirasemtiv activation of fast skeletal muscle, J. Med. Chem., 64, 3026-3034, https://doi.org/10.1021/acs.jmedchem.0c01412.
- Russell, A. J., Hartman, J. J., Hinken, A. C., Muci, A. R., Kawas, R., Driscoll, L., Godinez, G., Lee, K. H., Marquez, D., Browne, W. F. 4th, Chen, M. M., Clarke, D., Collibee, S. E., Garard, M., Hansen, R., Jia, Z., Lu, P. P., Rodriguez, H., Saikali, K. G., Schaletzky, J., et al. (2012) Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases, Nat. Med., 18, 452-455, https://doi.org/10.1038/nm.2618.
- Shefner, J., Cedarbaum, J. M., Cudkowicz, M. E., Maragakis, N., Lee, J., Jones, D., Watson, M. L., Mahoney, K., Chen, M., Saikali, K., Mao, J., Russell, A. J., Hansen, R. L., Malik, F., and Wolff, A. A. (2012) Safety, tolerability and pharmacodynamics of a skeletal muscle activator in amyotrophic lateral sclerosis, Amyotroph. Lateral. Scler., 13, 430-438, https://doi.org/10.3109/17482968.2012.684214.
- Shefner, J. M., Watson, M. L., Meng, L., and Wolff, A. A. (2013) A study to evaluate safety and tolerability of repeated doses of tirasemtiv in patients with amyotrophic lateral sclerosis, Amyotroph. Lateral Scler. Frontotemporal Degener., 14, 574-581, https://doi.org/10.3109/21678421.2013.822517.
- Shefner, J. M., Wolff, A. A., and Meng, L. (2013) The relationship between tirasemtiv serum concentration and functional outcomes in patients with ALS, Amyotroph. Lateral Scler. Frontotemporal Degener., 14, 582-585, https://doi.org/10.3109/21678421.2013.817587.
- Shefner, J. M., Wolff, A. A., Meng, L., Bian, A., Lee, J., Barragan, D., and Andrews, J. A. (2016) A randomized, placebo-controlled, double-blind phase IIb trial evaluating the safety and efficacy of tirasemtiv in patients with amyotrophic lateral sclerosis, Amyotroph. Lateral Scler. Frontotemporal Degener., 17, 426-435, https://doi.org/ 10.3109/21678421.2016.1148169.
- Sanders, D. B., Rosenfeld, J., Dimachkie, M. M., Meng, L., and Malik, F. I. (2015) A double-blinded, randomized, placebo-controlled trial to evaluate efficacy, safety, and tolerability of single doses of tirasemtiv in patients with acetylcholine receptor-binding antibody-positive myasthenia gravis, Neurotherapeutics, 12, 455-460, https:// doi.org/10.1007/s13311-015-0345-y.
- Andrews, J. A., Cudkowicz, M. E., Hardiman, O., Meng, L., Bian, A., Lee, J., Wolff, A. A., Malik, F. I., and Shefner, J. M. (2018) VITALITY-ALS, a phase III trial of tirasemtiv, a selective fast skeletal muscle troponin activator, as a potential treatment for patients with amyotrophic lateral sclerosis: study design and baseline characteristics, Amyotroph. Lateral Scler. Frontotemporal Degener., 19, 259-266, https://doi.org/10.1080/21678421.2018.1426770.
- Shefner, J. M., Cudkowicz, M. E., Hardiman, O., Cockcroft, B. M., Lee, J. H., Malik, F. I., Meng, L., Rudnicki, S. A., Wolff, A. A., and Andrews, J. A. (2019) A phase III trial of tirasemtiv as a potential treatment for amyotrophic lateral sclerosis, Amyotroph. Lateral Scler. Frontotemporal Degener., 0, 1-11, https://doi.org/10.1080/21678421. 2019.1612922.
- Hwee, D. T., Kennedy, A. R., Hartman, J. J., Ryans, J., Durham, N., Malik, F. I., and Jasper, J. R. (2015) The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure, J. Pharmacol. Exp. Ther., 353, 159-168, https://doi.org/10.1124/jpet.114.222224.
- Andrews, J. A., Miller, T. M., Vijayakumar, V., Stoltz, R., James, J. K., Meng, L., Wolff, A. A., and Malik, F. I. (2018) CK-2127107 amplifies skeletal muscle response to nerve activation in humans, Muscle Nerve, 57, 729-734, https://doi.org/10.1002/mus.26017.
- Cheng, A. J., Hwee, D. T., Kim, L. H., Durham, N., Yang, H. T., Hinken, A. C., Kennedy, A. R., Terjung, R. L., Jasper, J. R., Malik, F. I., and Westerblad, H. (2019) Fast skeletal muscle troponin activator CK-2066260 increases fatigue resistance by reducing the energetic cost of muscle contraction, J. Physiol., 597, 4615-4625, https://doi.org/10.1113/jp278235.
- Shefner, J. M., Andrews, J. A., Genge, A., Jackson, C., Lechtzin, N., Miller, T. M., Cockroft, B. M., Meng, L., Wei, J., Wolff, A. A., Malik, F. I., Bodkin, C., Brooks, B. R., Caress, J., Dionne, A., Fee, D., Goutman, S. A., Goyal, N. A., Hardiman, O., Hayat, G., et al. (2021) A phase 2, double-blind, randomized, dose-ranging trial of reldesemtiv in patients with ALS, Amyotroph. Lateral Scler. Frontotemporal Degener., 22, 287-299, https://doi.org/10.1080/ 21678421.2020.1822410.
- Collibee, S. E., Bergnes, G., Chuang, C., Ashcraft, L., Gardina, J., Garard, M., Jamison, C. R., Lu, K., Lu, P. P., Muci, A., Romero, A., Valkevich, E., Wang, W., Warrington, J., Yao, B., Durham, N., Hartman, J., Marquez, A., Hinken, A., Schaletzky, J., et al. (2021) Discovery of reldesemtiv, a fast skeletal muscle troponin activator for the treatment of impaired muscle function, J. Med. Chem., 64, 14930-14941, https://doi.org/10.1021/ acs.jmedchem.1c01067.
- Issahaku, A. R., Ibrahim, M. A. A., Mukelabai, N., and Soliman, M. E. S. (2023) Intermolecular and dynamic investigation of the mechanism of action of reldesemtiv on fast skeletal muscle troponin complex toward the treatment of impaired muscle function, Protein J., 42, 263-275, https://doi.org/10.1007/s10930-023-10091-y.
- Rudnicki, S. A., Andrews, J. A., Duong, T., Cockroft, B. M., Malik, F. I., Meng, L., Wei, J., Wolff, A. A., Genge, A., Johnson, N. E., Tesi-Rocha, C., Connolly, A. M., Darras, B. T., Felice, K., Finkel, R. S., Shieh, P. B., Mah, J. K., Statland, J., Campbell, C., Habib, A. A., et al. (2021) Reldesemtiv in patients with spinal muscular atrophy: a phase 2 hypothesis-generating study, Neurotherapeutics, 18, 1127-1136, https://doi.org/10.1007/s13311-020-01004-3.
- Shefner, J. M., Al-Chalabi, A., Andrews, J. A., Chio, A., De Carvalho, M., Cockroft, B. M., Corcia, P., Couratier, P., Cudkowicz, M. E., Genge, A., Hardiman, O., Heiman-Patterson, T., Henderson, R. D., Ingre, C., Jackson, C. E., Johnston, W., Lechtzin, N., Ludolph, A., Maragakis, N. J., Miller, T. M., et al. (2023) COURAGE-ALS: a randomized, double-blind phase 3 study designed to improve participant experience and increase the probability of success, Amyotroph. Lateral Scler. Frontotemporal Degener., 24, 523-534, https://doi.org/10.1080/21678421.2023.2216223.
- Robertson, I. M., Baryshnikova, O. K., Li, M. X., and Sykes, B. D. (2008) Defining the binding site of levosimendan and its analogues in a regulatory cardiac troponin C-troponin I complex, Biochemistry, 47, 7485-7495, https://doi.org/10.1021/bi800438k.
- Thompson, B. R., Martindale, J., and Metzger, J. M. (2016) Sarcomere neutralization in inherited cardiomyopathy: small-molecule proof-of-concept to correct hyper-Ca2+-sensitive myofilaments, Am. J. Physiol. Heart Circ. Physiol., 311, H36-43, https://doi.org/10.1152/ajpheart.00981.2015.
- Cai, F., Hwang, P. M., and Sykes, B. D. (2018) Structural changes induced by the binding of the calcium desensitizer w7 to cardiac troponin, Biochemistry, 57, 6461-6469, https://doi.org/10.1021/acs.biochem.8b00882.
- Adhikari, B. B., and Wang, K. (2004) Interplay of troponin- and myosin-based pathways of calcium activation in skeletal and cardiac muscle: the use of W7 as an inhibitor of thin filament activation, Biophys. J., 86, 359-370, https://doi.org/10.1016/s0006-3495(04)74112-0.
Supplementary files
