The role of noncanonical stacking interactions of heterocyclic RNA bases in ribosome functioning

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Identification and analysis of recurrent elements (motifs) in DNA, RNA and protein macromolecules is an important step in studying the structure and functions of these biopolymers. In this paper, we investigated the functional role of NA-BSE (Non-Adjacent Base-Stacking Element), a widespread motif in the tertiary structure of various RNAs, in RNA-RNA interactions at various stages of ribosome function during translation of genetic information. Motifs of this type, reversibly formed during mRNA decoding, movement of ribosome subunits relative to each other, and movement of mRNA and tRNA along the ribosome during translocation, are described. EF-G-dependent formation of NA-BSE involving nucleotide residues of 5S rRNA and 23S rRNA is considered in particular.

Full Text

Restricted Access

About the authors

V. G. Metelev

Lomonosov Moscow State University

Email: bogdanov@belozersky.msu.ru

Faculty of Chemistry

Russian Federation, 119991 Moscow

E. F. Baulin

Moscow Institute of Physics and Technology

Email: bogdanov@belozersky.msu.ru
Russian Federation, 141701 Dolgoprudny, Moscow Region

A. A. Bogdanov

Lomonosov Moscow State University; Lomonosov Moscow State University; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Author for correspondence.
Email: bogdanov@belozersky.msu.ru

Faculty of Chemistry, Lomonosov Moscow State University; A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

Russian Federation, 119991 Moscow; 119992 Moscow; 117997 Moscow

References

  1. Ganser, L. R., Kelly, M. L., Herschlag, D., and Al-Hashimi, H. M. (2019) The roles of structural dynamics in the cellular functions of RNAs, Nat. Rev. Mol. Cell Biol., 20, 474-489, https://doi.org/10.1038/s41580-019-0136-0.
  2. Wu, M. T., and D’Souza, V. (2020) Alternate RNA structures, Cold Spring Harb. Perspect. Biol., 12, a032425, https://doi.org/10.1101/cshperspect.a032425.
  3. Baulin, E., Metelev, V., and Bogdanov, A. (2020) Base-intercalated and base-wedged stacking elements in 3D-structure of RNA and RNA-protein complexes, Nucleic Acids Res., 48, 8675-8685, https://doi.org/10.1093/ nar/gkaa610.
  4. Метелев В. Г., Баулин Е. Ф., Богданов А. А. (2023) Множественные неканонические стэкинг-взаимодействия гетероциклических оснований как один из главных факторов организации третичной структуры, Биохимия, 88, 975-985, https://doi.org/10.31857/S0320972523060076.
  5. Spirin, A. S. (1985) Ribosomal translocation: facts and models, Progr. Nucleic Acid Res. Mol. Biol., 32, 75-114, https://doi.org/10.1016/s0079-6603(08)60346-3.
  6. Noller, H. F., Lancaster, L., Mohan, S., and Zhou, J. (2017) Ribosome structural dynamics in translocation: yet another functional role for ribosomal RNA, Quart. Rev. Biophys., 50, e12, https://doi.org/10.1017/S0033583517000117.
  7. Sweeney, B. A., Roy, P., and Leontis, N. B. (2015) An introduction to recurrent nucleotide interactions in RNA, Wiley Interdiscip. Rev. RNA, 6, 17-45, https://doi.org/10.1002/wrna.1258.
  8. Korostelev, A. A. (2022) The structural dynamics of translation, Annu. Rev. Biochem., 91, 245-267, https://doi.org/ 10.1146/annurev-biochem-071921-122857.
  9. Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P. E., and Berman, H. M. (2006) The RCSB PDB information portal for structural genomics, Nucleic Acids Res., 34, D302-D305, https://doi.org/10.1093/ nar/gkj120.
  10. Leontis, N., and Westhof, E. (2012) RNA 3D structure analysis and prediction, in Nucleic Acids and Molecular Biology, https://doi.org/10.1007/978-3-642-25740-7_13.
  11. Lu, X.-Jun, Bussemaker, H. J., and Olson, W. K. (2015). DSSR: an integrated software tool for dissecting the spatial structure of RNA, Nucleic Acids Res., 43, e142, https://doi.org/10.1093/nar/gkv716.
  12. Bohdan, D. R., Voronina, V. V., Bujnicki, J. M., and Baulin, E. F. (2023) A comprehensive survey of long-range tertiary interactions and motifs in non-coding RNA structures, Nucleic Acids Res., 51, 8367-8382, https:// doi.org/10.1093/nar/gkad605.
  13. Zirbel, C. L., Sponer, J. E., Sponer, J., Stombaugh, J., and Leontis, N. B. (2009) Classification and energetics of the base-phosphate interactions in RNA, Nucleic Acids Res., 37, 4898-4918, https://doi.org/10.1093/nar/gkp468.
  14. Chawla, M., Chermak, E., Zhang, Q., Bujnicki, J. M., Oliva, R., and Cavallo, L. (2017) Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs, Nucleic Acids Res., 45, 11019-11032, https://doi.org/10.1093/nar/gkx757.
  15. Leontis, N. B., and Westhof, E. (2001) Geometric nomenclature and classification of RNA base pairs, RNA, 7, 499-502, https://doi.org/10.1017/S1355838201002515.
  16. Ogle, J. M., Brodersen, D. E., Clemons, W. M., Jr., Tarry, M. J., Carter, A. P., and Ramakrishnan, V. (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit, Science, 292, 897-902, https://doi.org/10.1126/science.1060612.
  17. Ogle, J. M., and Ramakrishnan, V., (2005) Structural insights into translation fidelity, Annu. Rev. Biochem., 74, 129-177, https://doi.org/10.1146/annurev.biochem.74.061903.155440.
  18. Abdi, N. M., and Frederick, K. (2005) Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli, RNA, 11, 1624-1632, https://doi.org/10.1261/rna.2118105.
  19. Jenner, L., Demeshkina, N., Yusupova, G., and Yusupov, M. (2010) Structural rearrangements of the ribosome at the tRNA proofreading step, Nat. Struct. Mol. Biol., 17, 1072-1078, https://doi.org/10.1038/nsmb.1880.
  20. Loveland, A. B., Demo, G., Grigorieff, N., and Korostelev, A. A. (2017) Ensemble cryo-EM elucidates the mechanism of translation fidelity, Nature, 546, 113-117, https://doi.org/10.1038/nature22397.
  21. Rodnina, M. V., Fischer, N., Maracci, C., and Stark, H. (2017) Ribosome dynamics during decoding, Phil. Trans. R. Soc., 372, 20160182, https://doi.org/10.1098/rstb.2016.0182.
  22. Korostelev, A., Asahara, H., Lancaster, L., Laurberg, M., Hirschi, A., Zhu, J., Trakhanov, S., Scott, W. G., and Noller, H. F. (2008) Crystal structure of a translation termination complex formed with release factor RF2, Proc. Natl. Acad. Sci. USA, 105, 19684-19689, https://doi.org/10.1073/pnas.0810953105.
  23. Brown, A., Shao, S., Murray, J., Hegde, R. S., and Ramakrishnan, V. (2015) Structural basis for stop codon recognition in eukaryotes, Nature, 524, 493-496, https://doi.org/10.1038/nature14896.
  24. Watson, Z. L., Ward, F. R., Méheust, R., Ad, O., Schepartz, A., Banfield, J. F., and Cate, J. H. (2020) Structure of the bacterial ribosome at 2 A resolution, Elife, 9, e60482, https://doi.org/10.7554/eLife.60482.
  25. Zhou, J., Lancaster, L., Donohue, J. P., and Noller, H. F. (2013) Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation, Science, 340, 1236086, https://doi.org/10.1126/ science.1236086.
  26. Smart, A., Lancaster, L., Donohue, J. P., Niblett, D., and Noller, H. F. (2024) Implication of nucleotides near the 3’ end of 16S rRNA in guarding the translational reading frame, Nucleic Acids Res., 52, 5950-5958, https:// doi.org/10.1093/nar/gkae143.
  27. Liu, Q., and Fredrick, K. (2016) Intersubunit bridges of the bacterial ribosome, J. Mol. Biol., 428, 2146-2164, https://doi.org/10.1016/j.jmb.2016.02.009.
  28. Zhang, J., and Ferré-D’Amaré, A. R. (2016) The tRNA elbow in structure, recognition and evolution, Life, 6, 3, https://doi.org/10.3390/life6010003.
  29. O’Connor, M., and Dahlberg, A. E. (1993) Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity, Proc. Natl. Acad. Sci. USA, 90, 9214-9218, https://doi.org/10.1073/pnas.90.19.9214.
  30. Nissley, A. J., Penev, P. I., Watson, Z. L., Banfield, J. F., and Cate, J. H. D. (2023) Rare ribosomal RNA sequences from archaea stabilize the bacterial ribosome, Nucleic Acids Res., 51, 1880-1894, https://doi.org/10.1093/nar/gkac1273.
  31. Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2003) Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit, RNA, 9, 1345-1352, https://doi.org/10.1261/rna.5120503.
  32. Mohan, S., and Noller, H. F. (2017) Recurring RNA structural motifs underlie the mechanics of L1 stalk movement, Nat. Commun., 8, 14285, https://doi.org/10.1038/ncomms14285.
  33. Dontsova, O., Tishkov, V., Dokudovskaya, S., Bogdanov, A., Doering, T., Rinke-Appel, J., Thamm, S., Greuer, B., and Brimacombe, R. (1994) Stem-loop IV of 5S rRNA lies close to the peptidyltransferase center, Proc. Natl. Acad. Sci. USA, 91, 4125-4129, https://doi.org/10.1073/pnas.91.10.4125.
  34. Sergiev, P. V., Bogdanov, A. A., Dahlberg, A. E., and Dontsova, O. A. (2000) Mutations at position A960 of E. coli 23S ribosomal RNA influence the structure of 5S ribosomal RNA and the peptidyltransferase region of 23S ribosomal RNA, J. Mol. Biol., 299, 379-389, https://doi.org/10.1006/jmbi.2000.3739.
  35. Smith, M. W., Meskauskas, A., Wang, P., Sergiev, P. V., and Dinman, J. D. (2001) Saturation mutagenesis of 5S rRNA in Saccharomyces cerevisiae, Mol. Cell Biol., 21, 8264-8275, https://doi.org/10.1128/MCB.21.24.8264-8275.2001.
  36. Kouvela, E. C., Gerbanas, G. V., Xaplanteri, M. A., Petropoulos, A. D., Dinos, G. P., and Kalpaxis, D. L. (2007) Changes in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine, Nucleic Acids Res., 35, 5108-5119, https://doi.org/10.1093/nar/gkm546.
  37. Huang, S., Aleksashin, N. A., Loveland, A. B., Klepacki, D., Reier, K., Kefi, A., Szal, T., Remme, J., Jaeger, L., Vázquez-Laslop, N., Korostelev, A. A., and Mankin, A. S. (2020) Ribosome engineering reveals the importance of 5S rRNA autonomy for ribosome assembly, Nat. Commun., 11, 2900, https://doi.org/10.1038/s41467-020-16694-8.
  38. Davis, J. H., Tan, Y. Z., Carragher, B., Potter, C. S., Lyumkis, D., and Williamson, J. R. (2016) Modular assembly of the bacterial large ribosomal subunit, Cell, 167, 1610-1622, https://doi.org/10.1016/j.cell.2016.11.020.
  39. Thoms, M., Lau, B., Cheng, J., Fromm, L., Denk, T., Kellner, N., Flemming, D., Fischer, P., Falquet, L., Berninghausen, O., Beckmann, R., and Hurt, E. (2023) Structural insights into coordinating 5S RNP rotation with ITS2 pre-RNA processing during ribosome formation, EMBO Rep., 24, e57984, https://doi.org/10.15252/embr.202357984.
  40. Carbone, C. E., Loveland, A. B., Gamper, H. B., Jr., Hou, Y. M., Demo, G., and Korostelev, A. A. (2021) Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP, Nat. Commun., 12, 7236, https://doi.org/10.1038/s41467-021-27415-0.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Formation of NA-BSE in the decoding center of the E. coli ribosome. a – Both the A- and P-sites of the ribosome are involved in codon-anticodon interactions (PDB ID: 5UYM); b – the A-site of the ribosome is free (PDB ID: 5UYK) (details in the text). Construction of spatial structures of RNA, their analysis and creation of all illustrations were carried out using the Discovery Studio Visualizer v.21.1.0.20298 program.

Download (675KB)
3. Fig. 2. Formation of stacked NA-BSE involving G530 of 16S rRNA and A3 stop codon of mRNA located in the A-site of the ribosome (PDB ID: 4V67, a). Universal method of fixation of tRNA in the P-site of the ribosome by formation of NA-BSE from C34 tRNA and C1400 of 16S rRNA exposed from its polynucleotide chain due to formation of NA-BSE C1399–G1401 (PDB ID: 7K00, b)

Download (431KB)
4. Fig. 3. Formation (PDB ID: 7SS9, a) and destruction (PDB ID: 7SSL, b) of the B7 “bridge” between the subunits of the E. coli ribosome

Download (470KB)
5. Fig. 4. NA-BSE formed during the translocation of tRNA along the ribosome in its A- and E-sites

Download (1MB)
6. Fig. 5. NA-BSE formed upon binding of the 3′ end of deacylated tRNA to the E-site of the E. coli ribosome. a – “Pocket” for binding of the acceptor end of tRNA in a vacant ribosome (PDB ID: 6PJ6); b – NA-BSE G2421–A76–C2422, deacylated tRNA is in the ribosome in an intermediate P/E state (PDB ID: 8SYL); c – formation of a flat conformation C75–A76 and a stacked NA-BSE involving the C75 residue of tRNA before dissociation of tRNA from the ribosome (PDB ID: 7K00)

Download (417KB)
7. Fig. 6. Relative arrangement of residues G19 and C56 of the tRNA “elbow” and G2112 and G2168 of the “L1-protrusion” of 23S rRNA, a – at the initial stage of tRNA movement from the P-site to the E-site of the ribosome (PDB ID: 7ST6); b – upon complete movement of tRNA to the E-site (PDB ID: 7SSN); c – at the initial stage of tRNA dissociation from the E-site (PDB ID: 7ST2)

Download (377KB)
8. Fig. 7. NA-BSE formed by nucleotide residues of the D-loop of 5S rRNA and the so-called “loop 960” closing the helix H39 of 23S rRNA in the E. coli ribosome (PDB ID: 5MDV)

Download (489KB)
9. Fig. 8. Mutual arrangement of nucleotide residues of U89 tRNA and U958 23S rRNA, a – in the presence (PDB ID: 7SSL) and b – in the absence (PDB ID: 7SSW) of the elongation factor EF-G in the E. coli ribosome

Download (2MB)
10. Fig. 9. Contact in the form of NA-BSE adjacent to the D-loop of the double helix IV of 5S rRNA and n.a. A1124 of the double loop of the 23S rRNA of Haloarcula marismortui ribosomes

Download (569KB)
11. Appendix. Table P1
Download (30MB)
12. Appendix. Table P2
Download (387KB)

Copyright (c) 2024 Russian Academy of Sciences