Adaptation of the Stavropol population of the predatory bug Orius laevigatus (Fieber) (Heteroptera, Anthocoridae) to mass rearing conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Natural geographic range of the predatory bug Orius laevigatus which is widely used for biological control of various insect pests in greenhouses includes Western, Central, and Southern Europe, Mediterranean, Northern Africa, and South Asia. In the former USSR it was recorded in the southern Ukraine, Crimea, Abkhazia, Armenia, Azerbaijan, and Turkmenistan. In 2020 we found O. laevigatus in a sunflower field in Stavropol Territory of Russia. To estimate the biocontrol potential of the Stavropol population, the process of its adaptation to mass rearing conditions was investigated over 17 sequential generations. The experiments have shown that individuals of the Stavropol population did not differ significantly in several important parameters of reproduction and development (female fecundity, survival of preimaginal stages, etc.) under the mass rearing conditions from individuals of the laboratory population reared at these conditions over many tens of generations. These results suggest that the Stavropol population of O. laevigatus originates from bugs sporadically escaped from local greenhouses and mass rearing facilities rather than represents the result of the natural spread from the Black Sea coast caused by global warming.

Full Text

Restricted Access

About the authors

T. D. Perova

Всероссийский институт защиты растений РАН; Институт прикладной энтомологии (НПП "ИНАППЕН")

Email: perova1996@list.ru
шоссе Подбельского, 3, С.-Петербург–Пушкин, 196608; ул. Летчика Паршина, 9, С.-Петербург, 197350

S. Y. Reznik

Всероссийский институт защиты растений РАН; Зоологический институт РАН

Author for correspondence.
Email: reznik1952@mail.ru
Russian Federation, шоссе Подбельского, 3, С.-Петербург–Пушкин, 196608; Университетская наб., 1, С.-Петербург, 199034

E. G. Kozlova

Всероссийский институт защиты растений РАН

Email: kategen_vizr@mail.ru
Russian Federation, шоссе Подбельского, 3, С.-Петербург–Пушкин, 196608

I. I. Kabak

Всероссийский институт защиты растений РАН

Email: ilkabak@yandex.ru
Russian Federation, шоссе Подбельского, 3, С.-Петербург–Пушкин, 196608

N. A. Belyakova

Всероссийский институт защиты растений РАН

Email: biocontrol@vizr.spb.ru
Russian Federation, шоссе Подбельского, 3, С.-Петербург–Пушкин, 196608

References

  1. Миронова М. К., Ижевский С. С., Ахатов А. К. 1998. Перспективы использования Orius laevigatus (Fieb.) (Heteroptera, Anthocoridae) против трипса Frankliniella occidentalis (Perg.) (Thysanoptra, Thripidae). В кн.: Г. С. Медведев (ред.). Проблемы энтомологии в России. Т. 2. СПб.: Зоологический институт РАН, с. 34–35.
  2. Мокроусова Е. П. 2001. Возможность использования в борьбе с оранжерейной белокрылкой Trialeurodes vaporariorum Westw. хищного клопа Orius laevigatus Fieb. Вестник защиты растений 1: 76.
  3. Сапрыкин А. А., Пазюк И. М. 2003. Биологическая борьба с трипсами: применение и разведение хищных клопов ориусов. Гавриш 3: 26–29.
  4. Саулич А. Х., Мусолин Д. Л. 2009. Сезонное развитие и экология антокорид (Heteroptera, Anthocoridae). Энтомологическое обозрение 88 (2): 257–291.
  5. Трапезникова О. В. 2010а. Селекция хищного клопа Orius laevigatus Fieb. на повышение плодовитости при разведении на растении-суккуленте Kalanchoe daigremontiana Hamet & Perrier. Вестник защиты растений 1: 52–56.
  6. Трапезникова О. В. 2010б. Оптимизация массового разведения клопов рода Orius. Защита и карантин растений 1: 48–49.
  7. Элов Э. С. 1976. Полужесткокрылые сем. Anthocoridae (Heteroptera) Средней Азии и Казахстана. Энтомологическое обозрение 55 (2): 369–380.
  8. Aukema B., Hermes D. 2009. Nieuwe en interessante Nederlandse wantsen III (Hemiptera: Heteroptera). Nederlandse Faunistische Mededelingen 31: 53–87.
  9. Aukema B., Loomans A. 2005. De wants Orius laevigatus in Nederland (Heteroptera: Anthocoridae). Nederlandse Faunistische Mededelingen 23: 125–127.
  10. Balanza V., Mendoza J. E., Bielza P. 2019. Variation in susceptibility and selection for resistance to imidacloprid and thiamethoxam in Mediterranean populations of Orius laevigatus. Entomologia Experimentalis et Applicata 167 (7): 626–635. https://doi.org/10.1111/eea.12813
  11. Balanza V., Mendoza J. E., Cifuentes D., Bielza P. 2021. Selection for resistance to pyrethroids in the predator Orius laevigatus. Pest Management Science 77 (5): 2539–2546. https://doi.org/10.1002/ps.6288
  12. Bielza P., Balanza V., Cifuentes D., Mendoza J. E. 2020. Challenges facing arthropod biological control: identifying traits for genetic improvement of predators in protected crops. Pest Management Science 76 (11): 3517–3526. https://doi.org/10.1002/ps.5857
  13. Farzaneh M. 2010. The faunistic survey of Orius species (Hemiptera: Anthocoridae) in Shiraz and Marvdasht region. In: M. Farzaneh, H. Ostovan, M. Haghani (eds). Natural Enemies and Biological Control. 19th Iranian Plant Protection Congress, 31 July — 3 August 2010. Tehran: Iranian Research Institute of Plant Protection, p. 144.
  14. Hoffmann A. A., Ross P. A. 2018. Rates and patterns of laboratory adaptation in (mostly) insects. Journal of Economic Entomology 111 (2): 501–509. https://doi.org/10.1093/jee/toy024
  15. Kruitwagen A., Beukeboom L. W., Wertheim B. 2018. Optimization of native biocontrol agents, with parasitoids of the invasive pest Drosophila suzukii as an example. Evolutionary Applications 11 (9): 1473–1497. https://doi.org/10.1111/eva.12648
  16. Pazyuk I. M., Binitskaya N. V. 2020. Laboratory assessment of the suitability of predatory bugs Orius laevigatus and Orius majusculus as natural enemies of seed potato pests in greenhouses. Plant Protection News 103 (4): 274–276. https://doi.org/10.31993/2308-6459-2020-103-4-13984
  17. Péricart J. 1972. Hémiptères. Anthocoridae, Cimicidae et Microphysidae de lʹOuest-Paléarctique. Faune de lʹEurope et du bassin méditarranéen. Vol. 7. Paris: Masson et Cie, 402 p.
  18. Péricart J. 1996. Fam. Anthocoridae. In: B. Aukema, Ch. Rieger (eds). Catalogue of the Heteroptera of the Palaearctic region. Vol. 2. Cimicomorpa I. Amsterdam: The Netherlands Entomological Society, p. 108–141.
  19. Schuldiner-Harpaz T., Coll M. 2022. Considering the geographic diversity of natural enemy traits in biological control: A quantitative approach using Orius predators as an example. Diversity 14 (11): 963.
  20. Sentis A., Hemptinne J. L., Magro A., Outreman Y. 2022. Biological control needs evolutionary perspectives of ecological interactions. Evolutionary Applications 15 (10): 1537–1554. https://doi.org/10.1111/eva.13457
  21. Sethuraman A., Janzen F. J., Weisrock D. W., Obrycki J. J. 2020. Insights from population genomics to enhance and sustain biological control of insect pests. Insects 11 (8): 462. https://doi.org/10.3390/insects11080462
  22. Thompson M. N., Medina R. F., Helms A. M., Bernal J. S. 2022. Improving natural enemy selection in biological control through greater attention to chemical ecology and host-associated differentiation of target arthropod pests. Insects 13 (2): 160. https://doi.org/10.3390/insects13020160
  23. Tommasini M. G., van Lenteren J. C. 2003. Occurrence of diapause in Orius laevigatus. Bulletin of Insectology 56 (2): 225–251.
  24. Van Lenteren J. C. [Интернет-документ] 2012. IOBC internet book of biological control [URL: https://www.iobc-global.org/publications_iobc_internet_book_of_biological_control.html]
  25. Van Lenteren J. C., Alomar O., Ravensberg W. J., Urbaneja A. 2020. Biological control agents for control of pests in greenhouses. In: M. L. Gullino, R. Albajes, P. C. Nicot (eds). Integrated Pest and Disease Management in Greenhouse Crops. Cham, Switzerland: Springer, p. 409–439.
  26. Venzon M., Janssen A., Sabelis M. W. 2002. Prey preference and reproductive success of the generalist predator Orius laevigatus. Oikos 97 (1): 116– 24. https://doi.org/10.1034/j.1600-0706.2002.970112.x
  27. Weintraub P. G., Pivonia S., Steinberg S. 2011. How many Orius laevigatus are needed for effective western flower thrips, Frankliniella occidentalis, management in sweet pepper? Crop Protection 30 (11): 1443–1448. https://doi.org/10.1016/j.cropro.2011.07.015
  28. Wright M. G., Bennett G. M. 2018. Evolution of biological control agents following introduction to new environments. BioControl 63: 105–116. https://doi.org/10.1007/s10526-017-9830-z
  29. Zuma M., Njekete C., Konan K. A. J., Bearez P., Amiens-Desneux E., Desneux N., Lavoir A.-V. 2023. Companion plants and alternative prey improve biological control by Orius laevigatus on strawberry. Journal of Pest Science 96 (2): 711–721. https://doi.org/10.1007/s10340-022-01570-9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of fertility of Orius laevigatus (Fieber) females in a number of generations during breeding using different egg-laying substrates. On the horizontal axis — successive generations; on the vertical axis — fertility (the number of eggs per 1 female, the average and its error). Egg–laying substrates: 1 - beans, 2 – kalanchoe.

Download (58KB)
3. Fig. 2. Dynamics of the proportion of Orius laevigatus (Fieber) eggs from which larvae emerged in a number of generations during breeding using different egg-laying substrates. On the horizontal axis — successive generations; on the vertical axis — the proportion of eggs from which larvae emerged (%, average and its error). Notation as in Fig. 1.

Download (49KB)
4. Fig. 3. Dynamics of the proportion of Orius laevigatus (Fieber) larvae that have developed to the imago stage in a number of generations during breeding using different egg-laying substrates. On the horizontal axis — successive generations; on the vertical axis — the proportion of larvae that have developed to the imago stage (%, average and its error). Notation as in Fig. 1, 2.

Download (51KB)
5. Fig. 4. Duration of preimaginal development of Orius laevigatus (Fieber) in a number of generations during breeding using different egg-laying substrates. On the horizontal axis — successive generations; on the vertical axis — the duration of preimaginal development (days, average and its error). Notation as in Fig. 1-3.

Download (54KB)
6. Fig. 5. Dynamics of survival of females of the Stavropol population of Orius laevigatus (Fieber) for the period from the 5th to the 19th day after hatching in a series of generations when breeding using different egg-laying substrates. On the horizontal axis — successive generations; on the vertical axis — the survival rate of the imago (%, average and its error). Notation as in Fig. 1-4.

Download (52KB)
7. Fig. 6. Fertility of females from Stavropol and VISR populations of Orius laevigatus (Fieber) in a number of generations during breeding on kalanchoe. On the horizontal axis — successive generations; on the vertical axis — fertility (the number of eggs per 1 female, the average and its error). Populations: 1 – Stavropol, 2 – VISR.

Download (47KB)
8. Fig. 7. The proportion of eggs from which larvae emerged in Stavropol and VIZR populations of Orius laevigatus (Fieber) in a number of generations during breeding on kalanchoe. On the horizontal axis — successive generations; on the vertical axis — the proportion of eggs from which larvae emerged (%, average and its error). Notation as in Fig. 6.

Download (45KB)
9. Fig. 8. The proportion of larvae that developed to the imago stage in Stavropol and VISR populations of Orius laevigatus (Fieber) in a number of generations during breeding on kalanchoe. On the horizontal axis — successive generations; on the vertical axis — the proportion of larvae that have developed to the imago stage (%, average and its error). Notation as in Fig. 6, 7.

Download (50KB)

Copyright (c) 2024 Russian Academy of Sciences