On the problem of magneto-induced circulations in thrombosed channels
- Autores: Musikhin A.Y.1, Zubarev A.Y.1
-
Afiliações:
- Ural Federal University
- Edição: Volume 88, Nº 10 (2024)
- Páginas: 1614-1620
- Seção: Microfluidics and ferrohydrodynamics of magnetic colloids
- URL: https://gynecology.orscience.ru/0367-6765/article/view/681732
- DOI: https://doi.org/10.31857/S0367676524100177
- EDN: https://elibrary.ru/DSJIYH
- ID: 681732
Citar
Resumo
A theoretical model and a method for its approximation analysis were developed to study circulation flows arising in a channel with a non-uniform alternating rotating magnetic field. This channel contains a non-magnetic fluid into which a cloud of ferrofluid is injected, the particles of which are distributed according to the Gaussian law along the channel. It is assumed that the right end of the channel is blocked to simulate a thrombosed vessel. The main goal of the study is to develop a scientific basis for increasing the efficiency of transport of thrombolytic drugs in thrombosed blood vessels using magnetic stimulation.
Palavras-chave
Texto integral

Sobre autores
A. Musikhin
Ural Federal University
Autor responsável pela correspondência
Email: antoniusmagna@yandex.ru
Rússia, Yekaterinburg
A. Zubarev
Ural Federal University
Email: antoniusmagna@yandex.ru
Rússia, Yekaterinburg
Bibliografia
- Creighton Francis M. Magnetic-based systems for treating occluded vessels. US Patent No. 8308628. 2012.
- Clements M.J. A mathematical model for magnetically-assisted delivery of thrombolytics in occluded blood vessels for ischemic stroke treatment. PhD thesis. Texas University, 2016.
- Долуденко И.М., Хайретдинова Д.Р., Загорский Д.Л. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 321; Doludenko I.M., Khairetdinova D.R., Zagorsky D.L. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 277.
- Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
- Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. P. 295.
- Ерин К.В., Вивчарь В.И., Шевченко Е.И. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 315; Yerin C.V., Vivchar V.I., Shevchenko E.I. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 272.
- Musikhin A., Zubarev A., Raboisson-Michel M. et al. // Phil. Trans. Royal Soc. A. 2020. V. 378. Art. No. 20190250.
- Мусихин А.Ю., Зубарев А.Ю. // Изв. РАН. МЖГ. 2023. № 3. С. 12; Musikhin A.Yu., Zubarev A.Yu. // Fluid Dynamics. 2023. V. 58. P. 12.
- Зубарев А.Ю., Мусихин А.Ю. // ЖЭТФ. 2023. Т. 163. № 4. С. 602; Zubarev A.Y., Musikhin A.Y. // J. Exp. Theor. Phys. 2023. V. 136. P. 534.
- Raboisson-Michel M. Micro-vortex magnetique pour le transport convective de molecules: vers une application biomedicale. University Cote d’Azur. 2022.
- Zubarev A.Y., Musikhin A.Y. // Eur. Phys. J. Spec. Top. 2023. V. 232. No. 8. P. 1333.
- Rosensweig R. Ferrohydrodynamics. NY.: Cambridge, 1985.
- Покровский В. Статистическая механика разбавленных суспензий. М.: Наука, 1978.
- Odenbach S. Magnetoviscous effect in ferrofluids. Springer, 2002.
- Onsager L. // Ann. N.Y. Acad. Sci. 1949. V. 5. P. 627.
- de Gennes P.G. The physics of liquid crystals. Oxford: Clarendon Press, 1974.
Arquivos suplementares
