On the problem of magneto-induced circulations in thrombosed channels

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A theoretical model and a method for its approximation analysis were developed to study circulation flows arising in a channel with a non-uniform alternating rotating magnetic field. This channel contains a non-magnetic fluid into which a cloud of ferrofluid is injected, the particles of which are distributed according to the Gaussian law along the channel. It is assumed that the right end of the channel is blocked to simulate a thrombosed vessel. The main goal of the study is to develop a scientific basis for increasing the efficiency of transport of thrombolytic drugs in thrombosed blood vessels using magnetic stimulation.

Texto integral

Acesso é fechado

Sobre autores

A. Musikhin

Ural Federal University

Autor responsável pela correspondência
Email: antoniusmagna@yandex.ru
Rússia, Yekaterinburg

A. Zubarev

Ural Federal University

Email: antoniusmagna@yandex.ru
Rússia, Yekaterinburg

Bibliografia

  1. Creighton Francis M. Magnetic-based systems for treating occluded vessels. US Patent No. 8308628. 2012.
  2. Clements M.J. A mathematical model for magnetically-assisted delivery of thrombolytics in occluded blood vessels for ischemic stroke treatment. PhD thesis. Texas University, 2016.
  3. Долуденко И.М., Хайретдинова Д.Р., Загорский Д.Л. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 321; Doludenko I.M., Khairetdinova D.R., Zagorsky D.L. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 277.
  4. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  5. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. P. 295.
  6. Ерин К.В., Вивчарь В.И., Шевченко Е.И. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 315; Yerin C.V., Vivchar V.I., Shevchenko E.I. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 272.
  7. Musikhin A., Zubarev A., Raboisson-Michel M. et al. // Phil. Trans. Royal Soc. A. 2020. V. 378. Art. No. 20190250.
  8. Мусихин А.Ю., Зубарев А.Ю. // Изв. РАН. МЖГ. 2023. № 3. С. 12; Musikhin A.Yu., Zubarev A.Yu. // Fluid Dynamics. 2023. V. 58. P. 12.
  9. Зубарев А.Ю., Мусихин А.Ю. // ЖЭТФ. 2023. Т. 163. № 4. С. 602; Zubarev A.Y., Musikhin A.Y. // J. Exp. Theor. Phys. 2023. V. 136. P. 534.
  10. Raboisson-Michel M. Micro-vortex magnetique pour le transport convective de molecules: vers une application biomedicale. University Cote d’Azur. 2022.
  11. Zubarev A.Y., Musikhin A.Y. // Eur. Phys. J. Spec. Top. 2023. V. 232. No. 8. P. 1333.
  12. Rosensweig R. Ferrohydrodynamics. NY.: Cambridge, 1985.
  13. Покровский В. Статистическая механика разбавленных суспензий. М.: Наука, 1978.
  14. Odenbach S. Magnetoviscous effect in ferrofluids. Springer, 2002.
  15. Onsager L. // Ann. N.Y. Acad. Sci. 1949. V. 5. P. 627.
  16. de Gennes P.G. The physics of liquid crystals. Oxford: Clarendon Press, 1974.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Illustration of the system under consideration. The distances from the solenoids to the center of the cloud are the same.

Baixar (16KB)
3. Fig. 2. Longitudinal component of velocity νx depending on coordinate x near the thrombus (x = 0) for different frequencies ω at fixed z = l / 3. Curve 1: ω = 10 s−1; curve 2: ω = 20 s−1. Volume concentration of particles in the center of the drop Φ0 = 0.01; dispersion σ = 1 cm; magnet characteristics are the same for all the others: diameter D = 1 cm; current I = 8 A; height h = 1 cm; number of turns N = 104; position of the cloud center x0 = 1 mm, channel width l = 2 mm

Baixar (16KB)
4. Fig. 3. Longitudinal component of velocity νx as a function of coordinate x far from the thrombus (x ~ 12 mm) for different frequencies ω at fixed z = l/3. Parameters are the same as in Fig. 3.

Baixar (18KB)
5. Fig. 4. Longitudinal component of velocity νx as a function of coordinate z for different times t at fixed x = x0/2 and ω = 10 s−1. Curve 1: t = 1 s; curve 2: t = 0.5 s. The remaining parameters are the same as in Fig. 2.

Baixar (16KB)
6. Appendix
Baixar (68KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024