On the problem of magneto-induced circulations in thrombosed channels

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A theoretical model and a method for its approximation analysis were developed to study circulation flows arising in a channel with a non-uniform alternating rotating magnetic field. This channel contains a non-magnetic fluid into which a cloud of ferrofluid is injected, the particles of which are distributed according to the Gaussian law along the channel. It is assumed that the right end of the channel is blocked to simulate a thrombosed vessel. The main goal of the study is to develop a scientific basis for increasing the efficiency of transport of thrombolytic drugs in thrombosed blood vessels using magnetic stimulation.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Musikhin

Ural Federal University

Хат алмасуға жауапты Автор.
Email: antoniusmagna@yandex.ru
Ресей, Yekaterinburg

A. Zubarev

Ural Federal University

Email: antoniusmagna@yandex.ru
Ресей, Yekaterinburg

Әдебиет тізімі

  1. Creighton Francis M. Magnetic-based systems for treating occluded vessels. US Patent No. 8308628. 2012.
  2. Clements M.J. A mathematical model for magnetically-assisted delivery of thrombolytics in occluded blood vessels for ischemic stroke treatment. PhD thesis. Texas University, 2016.
  3. Долуденко И.М., Хайретдинова Д.Р., Загорский Д.Л. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 321; Doludenko I.M., Khairetdinova D.R., Zagorsky D.L. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 277.
  4. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  5. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. P. 295.
  6. Ерин К.В., Вивчарь В.И., Шевченко Е.И. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 315; Yerin C.V., Vivchar V.I., Shevchenko E.I. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 272.
  7. Musikhin A., Zubarev A., Raboisson-Michel M. et al. // Phil. Trans. Royal Soc. A. 2020. V. 378. Art. No. 20190250.
  8. Мусихин А.Ю., Зубарев А.Ю. // Изв. РАН. МЖГ. 2023. № 3. С. 12; Musikhin A.Yu., Zubarev A.Yu. // Fluid Dynamics. 2023. V. 58. P. 12.
  9. Зубарев А.Ю., Мусихин А.Ю. // ЖЭТФ. 2023. Т. 163. № 4. С. 602; Zubarev A.Y., Musikhin A.Y. // J. Exp. Theor. Phys. 2023. V. 136. P. 534.
  10. Raboisson-Michel M. Micro-vortex magnetique pour le transport convective de molecules: vers une application biomedicale. University Cote d’Azur. 2022.
  11. Zubarev A.Y., Musikhin A.Y. // Eur. Phys. J. Spec. Top. 2023. V. 232. No. 8. P. 1333.
  12. Rosensweig R. Ferrohydrodynamics. NY.: Cambridge, 1985.
  13. Покровский В. Статистическая механика разбавленных суспензий. М.: Наука, 1978.
  14. Odenbach S. Magnetoviscous effect in ferrofluids. Springer, 2002.
  15. Onsager L. // Ann. N.Y. Acad. Sci. 1949. V. 5. P. 627.
  16. de Gennes P.G. The physics of liquid crystals. Oxford: Clarendon Press, 1974.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Illustration of the system under consideration. The distances from the solenoids to the center of the cloud are the same.

Жүктеу (16KB)
3. Fig. 2. Longitudinal component of velocity νx depending on coordinate x near the thrombus (x = 0) for different frequencies ω at fixed z = l / 3. Curve 1: ω = 10 s−1; curve 2: ω = 20 s−1. Volume concentration of particles in the center of the drop Φ0 = 0.01; dispersion σ = 1 cm; magnet characteristics are the same for all the others: diameter D = 1 cm; current I = 8 A; height h = 1 cm; number of turns N = 104; position of the cloud center x0 = 1 mm, channel width l = 2 mm

Жүктеу (16KB)
4. Fig. 3. Longitudinal component of velocity νx as a function of coordinate x far from the thrombus (x ~ 12 mm) for different frequencies ω at fixed z = l/3. Parameters are the same as in Fig. 3.

Жүктеу (18KB)
5. Fig. 4. Longitudinal component of velocity νx as a function of coordinate z for different times t at fixed x = x0/2 and ω = 10 s−1. Curve 1: t = 1 s; curve 2: t = 0.5 s. The remaining parameters are the same as in Fig. 2.

Жүктеу (16KB)
6. Appendix
Жүктеу (68KB)

© Russian Academy of Sciences, 2024