Deformation of volatility curves of the Russian stock market on the example of margined options on futures contracts on the RTS index
- Autores: Mulyaev K.N.1, Perekhod S.A.2
-
Afiliações:
- Sberbank CIB
- Financial University under the Government of the Russian Federation
- Edição: Volume 60, Nº 3 (2024)
- Páginas: 118-128
- Seção: Mathematical analysis of economic models
- URL: https://gynecology.orscience.ru/0424-7388/article/view/653296
- DOI: https://doi.org/10.31857/S0424738824030104
- ID: 653296
Citar
Resumo
We reassess the Russian stock market behavior in terms of the relationship between risk parameters and return on assets in connection with global structural changes in 2022. The subject of this study is volatility curves calculated from quotes of exchange options on RTS index futures. The purpose of the study is to analyze the relationship between volatility curves and the distribution of returns in 2015–2022, to analyze changes in the structure of this relationship in 2022, to assess the applicability of the GARCH model and to develop new investment and hedge strategies on the Russian stock market. The issue of interpreting the dynamics of volatility curves is disputable however, it was theoretically developed in the theory of valuation of derivative financial instruments. As a result of the study, unrelated structures of the distribution of returns and volatility curves for the RTS composite index were found throughout the entire period concerned, regardless of the presence of external shocks. It is concluded that in the Russian stock market, investors prefer protective options rather than speculative ones, despite the negative asymmetry of the distribution of RTS index returns. And despite the greater weight of positive returns in their distribution in each period under consideration, due to the technical features of the functioning of return indicators, the negative asymmetry of the return distribution does not necessarily correlate with growing volatility curves.
Texto integral

Sobre autores
K. Mulyaev
Sberbank CIB
Autor responsável pela correspondência
Email: mulyaevkostya@mail.ru
Rússia, Moscow
S. Perekhod
Financial University under the Government of the Russian Federation
Email: sperekhod@yandex.ru
Rússia, Moscow
Bibliografia
- Аганин А. Д. (2017). Сравнение GARCH и HAR-RV моделей для прогноза реализованной волатильности на российском рынке // Прикладная эконометрика. Т. 48. С. 63–84. [Aganin А. (2017). Forecast comparison of volatility models on the Russian stock market. Applied Econometrics, 48, 63–84 (in Russian).]
- Баженов Т. И., Фантаццини Д. (2019). Прогнозирование реализованной волатильности котируемых российских акций с помощью инструмента Google Trends и вмененной волатильности // Экономика промышленности. № 12 (1). P. 79–88. doi: 10.17073/2072-1633-2019-1-79-88 [Bazhenov T., Fantazzini D. (2019). Forecasting realized volatility of russian stocks using Google Trends and implied volatility. Russian Journal of Industrial Economics, 12 (1), 79–88. doi: 10.17073/2072-1633-2019-1-79-88 (in Russian).]
- Крицкий О. Л., Лисок Е. С. (2007). Асимптотическое оценивание коэффициентов модели стохастической волатильности // Прикладная эконометрика. № 2. C. 3–12. [Krickij O. L., Lisok E. S. (2007). Asymptotic estimation of coefficients of stochastic volatility models. Applied Econometrics, 2, 3–12 (in Russian).]
- Смирнов С. Н., Кузнецов В. А., Сливинский В. А. (2021). Гарантированный детерминистский подход к маржированию на срочном рынке: численный эксперимент // Экономика и математические методы. T. 57. № 4. C. 76–87. doi: 10.31857/S042473880017501-0 [Smirnov S. N., Kuznecov V. A., Slivinskij V. A. (2021). Guaranteed deterministic margining in the derivatives market: A numerical experiment. Economics and Mathematical Methods, 57, 4, 76–87. doi: 10.31857/S042473880017501-0 (in Russian).]
- Шелемех Е. А. (2017). Расчет экзотических опционов на неполных рынках // Экономика и математические методы. T. 53. № 3. C. 78–92. [Shelemekh E. A. (2017). Calculation of exotic options in incomplete markets. Economics and Mathematical Methods, 53, 3, 78–92 (in Russian).]
- Black F., Scholes M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 3, 637–654.
- Bollerslev T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
- Cao J., Chen J., Hull J. (2020). A neural network approach to understanding implied volatility movements. Quantitative Finance, 20 (9), 1405–1413. doi: 10.1080/14697688.2020.1750679
- Campos I., Cortazar G., Reyes T. (2017). Modeling and predicting oil VIX: Internet search, versus traditional variables. Energy Economics, 66, 194–204.
- Corsi F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7, 2, 174–196.
- Donaldson R. G., Kamstra M. J. (2005). Volatility forecasts, trading, and the arch versus option-implied volatility trade-off. Journal of Financial Research, 28, 4, 519–538.
- Hull J. C. (2018). Options, futures and other derivatives. London: Pearson.
- Hansen P., Lunde A. (2005). A forecast comparison of volatility models: Does anything beat a GARCH (1, 1)? Journal of Applied Econometrics, 20, 7, 873–889.
- Merton R. C. (1973a). Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4, 1 (Spring), 141–183.
- Merton R. C. (1973b). The relationship between put and call prices: Comment. Journal of Finance, 28 (March), 183–84.
- Ross S. (2015). The recovery theorem. The Journal of Finance, LXX, 2, 615–648.
Arquivos suplementares
