Electron transport and field electron emission mechanisms in 2D noncrystalline hetero structures with quantum barrier

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Impact of the depth of a quantum barrier in the form of a tunnel-thin charge-depletion carbon layer in the enriched noncrystalline carbon template on non-dissipative transport and field electron emission has been studied. It has been shown that cross-current nonlinearities in current variables in heterostructures with static low-field electric effects and current-voltage curve parameters of the field electron emission in the strong pulse electric fields with microsecond duration are determined by the parameters of quantum barrier and by the implementation of resonant tunneling conditions with different zero levels of size quantization energy.

Full Text

Restricted Access

About the authors

G. Ya. Krasnikov

Joint-Stock Company “Scientific-Research Institute of Molecular Electronics”

Email: vbokarev@niime.ru
Russian Federation, Zelenograd

V. P. Bokarev

Joint-Stock Company “Scientific-Research Institute of Molecular Electronics”

Author for correspondence.
Email: vbokarev@niime.ru
Russian Federation, Zelenograd

G. S. Teplov

Joint-Stock Company “Scientific-Research Institute of Molecular Electronics”

Email: vbokarev@niime.ru
Russian Federation, Zelenograd

R. K. Yafarov

Saratov branch-office of the Kotelnikov V. A. Institute for Radiotechnics and Electronics of the Russian Academy of Sciences

Email: pirpc@yandex.ru
Russian Federation, Saratov

References

  1. Jin-Woo Han, Jae Sub Oh and M. Meyyappan. Vacuum nanoelectronics: Back to the future? — Gate insulated nanoscale vacuum channel transistor. Appl. Phys. Lett. 100, 213505 (2012). http://dx.doi.org/10.1063/1.4717751.
  2. Fowler R.H., Nordheim L.W. Electronemission in intense electric fields // Proc. R. Soc. London. A. 1928. V. 119. P. 173–181.
  3. Патент RU2 455 724 C1. Опубликовано: 10.07.2012. Бюл. № 19. Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий. Авторы: Красников Г.Я., Зайцев Н.А., Орлов С.Н., Хомяков И.А., Яфаров Р.К.
  4. Marcus R.B., Ravi T.S., Gmitter T. et all. Formation of silicon tips with < 1 nm radius // Applied Physics Letters. 1990. Vol. 56, № 3. P. 236–238.
  5. Фурсей Г.Н., Поляков М.А., Кантонистов А.А., и др. // ЖТФ. 2013. Т. 83. № 6. С. 71.
  6. Panda K., Hyeok J.J., Park J.Y., et al. // Sci. Rep. 2007. № 7. P. 16325.
  7. Sobaszek M., Siuzdak K., Ryl J., et al. // J. Phys. Chem. C. 2017. V. 121. № 38. P. 20821.
  8. Яфаров Р.К., Сторублев А.В. Долговременная воспроизводимость эмиссионных характеристик алмазографитовых полевых источников электронов в нестационарных вакуумных условиях эксплуатации // Письма в ЖТФ. 2021. Т. 47, вып. 24. С. 17–19.
  9. Блохинцев Д.И. Основы квантовой механики. М.: Наука, 1٩83.
  10. Бонч-Бруевич В.Л, Калашников С.Г. Физика полупроводников. М.: Наука, 1٩77. 672 с.
  11. Пул Ч. – мл., Оуэнс Ф. Нанотехнологии. Москва.: Техносфера, 2006. 336 с.
  12. Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники. Москва. Физматкнига, 2006. 496 с.
  13. Успехи наноинженерии: электроника, материалы, структуры. Под ред. Дж. Дэвиса, М. Томсона. Москва.: Техносфера, 2011. 491 с.
  14. Яфаров Р.К. Физика СВЧ вакуумно-плазменных нанотехнологий. М.: Физматлит, 2009. 216 с.
  15. Яфаров Р.К. // Письма в ЖТФ. 2019. Т. 45. № 9. С. 3.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of transverse currents (a) and their differences (b) on the thickness of the depletion layer of two-layer heterostructures with reverse (1) and forward (2) connections of the power source.

Download (126KB)
3. Fig. 2. I-V characteristics (a) and transverse currents (b) at voltages of 30 (1) and 50 V (2) in three-layer heterostructures with different thicknesses of depletion layers, nm: 1 – 5; 2 – 10; 3 – 15; 4 – 20; 5 – 0.

Download (139KB)
4. Fig. 3. Field-voltage characteristics of two (a) and three-layer (b) heterostructures depending on the thickness of the depletion layer, nm: 1 – 5; 2 – 10; 3 – 15; 4 – 0.

Download (121KB)
5. Fig. 4. Dependences of field current densities (1), emission activation thresholds (2) (a), slope of the current-voltage characteristic (1) and intervals of permissible electric field strengths (2) (b) on the thickness of the depletion layers of two-layer heterostructures.

Download (142KB)
6. Fig. 5. Dependences of field current densities (1), emission activation thresholds (2) (a), I-V characteristic steepness (1) and intervals of permissible electric field strengths (2) (b) on the thickness of depletion layers of three-layer heterostructures.

Download (146KB)

Copyright (c) 2024 Russian Academy of Sciences