Features of upsets formation in VLSI under pulsed ionizing radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The analysis of upset occurrence in very large-scale integrated circuits (VLSI) under the influence of pulsed ionizing radiation of various nature is carried out. Upsets in VLSI under gamma or electron pulses, first of all, are determined the effects of rail span collapse, due to volume ionization of semiconductor structures. The features of upsets occurrence due to the non-stationary latchup and several possible competing effects are analyzed. Non-stationary surface radiation effects and fast annealing of radiation defects can lead, mainly, to temporary parametric failures, which depend on the dose rate. Single event effects under the influence of pulsed beams of neutrons, protons or ions are considered.

Full Text

Restricted Access

About the authors

A. I. Chumakov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) – JSC Specialized Electronic Systems

Author for correspondence.
Email: aichum@spels.ru
Russian Federation, Moscow

References

  1. Larin F. Radiation Effects in Semiconductor Devices. N.Y.: John Wiley and Sons. 1968. 287 p.
  2. Agahanyan T.M., Astvacaturyan E.R., Skorobogatov P.K. Radiatsionnyye effekty v integral’nykh mikroskhemakh (Radiation effects in integrated microcircuits). M.: Energoatomizdat. 1989. 256 p. (In Russian). ISBN: 5283029638
  3. Ionizing radiation effects in MOS devices and circuits / Ed. Ma T.-P., Dressendorfer P.V. New York: John Wiley & Sons, 1989. 608 p. ISBN: 9780471848936
  4. Chumakov A.I. Radiatsionnyye effekty v integral’nykh skhemakh (Radiation effects in integrated circuits). M.: Tekhnosfera. 2024. 384 p. (In Russian). ISBN: 9785948367071
  5. Massengil T.L., Diehl S.E. Transient Radiation Upset Simulation of CMOS Memory Circuits // IEEE Trans. on Nucl. Sci. 1984. V. 31. N 6. P. 1337–1343. https://doi.org/10.1109/TNS.1984.4333507
  6. Chumakov A.I. Modeling rail-span collapse in ICs exposed to a single radiation pulse // Russian Microelectronics. 2006. V. 35. № 3. P. 156–161. https://doi.org/10.1134/S1063739706030048
  7. Chumakov A.I. et. al. Mechanisms of initiation of unstable latchup effects in CMOS ICs // Russian Microelectronics. 2019. V. 48. № 4. P. 250–254. https://doi.org/10.1134/S1063739719040036
  8. Sogoyan A.V. et. al. Issledovaniye vliyaniya amplitudno-vremennykh kharakteristik impul’snogo vozdeystviya na urovni otkazov sovremennykh SBIS (Study of the influence of amplitude-temporal characteristics of pulse action on the failure rates in modern VLSI) // Nauch.-tekh. sb. “Stoykost’ 2022”. 2022. P. 155–158. (in Russian) EDN: XTFFQN
  9. Chumakov A.I., Gontar V.V. Predicting the failure threshold of dose rate of ICs exposed to pulsed ionizing radiation of arbitrary pulse shape //Russian Microelectronics. 2004. V. 33. № 2, P. 99–105. https://doi.org/10.1023/B:RUMI.0000018714.56717.63
  10. Shvetsov-Shilovskiy I.I. et. al. Nonstable latchups in CMOS ICs under pulsed laser irradiation //IEEE Trans. Nucl. Sci. 2020. V. 67. N. 7. P. 1540–1546. https://doi.org/10.1109/TNS.2020.3001169
  11. Wrobel T.F., Evans D.C. Rapid annealing in advanced bipolar microcircuits // IEEE Trans. Nucl. Sci. 1982. V. 29. № 6. P. 1721–1726. https://doi.org/10.1109/TNS.1982.4336436
  12. Slivin A., et. al. Construction of stations for applied research at the NICA accelerator complex // Physics of Particles and Nuclei Letters. 2022. V. 19. № 5. P. 528–531. https://doi.org/10.1134/S1547477122050375
  13. Filatov G.A. et. al. NICA beamlines and stations for applied research // Physics of Particles and Nuclei Letters. 2023. V. 20. № 4. P. 767–771. https://doi.org/10.1134/s1547477123040271
  14. Chumakov A.I., Bobrovsky D.V., Soloviev S.A. Vliyaniye impul’snogo kharaktera izlucheniya na parametry chuvstvitel’nosti integral’nykh skhem k odinochnym radiatsionnym effektam (The influence of an impulsed ion radiation on the sensitivity parameters of integrated circuits to single event effects) // Bezopasnost` Informatsionnykh Tekhnologiy. 2024. V. 31, N 4. P. 141–152. (in Russian). https://doi.org/10.26583/bit.2024.4.10
  15. Bobrovsky D.V. et. al. Osobennosti proyavleniya odinochnykh radiatsionnykh effektov v IS pri vozdeystvii impul’snykh puchkov ionov (Features of single event effects occurrence in ICs under pulse ion beams) // Voprosy atomnoy nauki i tekhniki. Seriya: Fizika radiatsionnogo vozdeystviya na radioelektronnuyu apparaturu. 2023. № 3. P. 11–15. (in Russian). EDN: MFFSJK
  16. Chumakov A.I. et. al. Modelirovaniye sboyev v IS pri impul’snom neytronnom vozdeystvii. Chast’ 3. Oblast’ srednikh intensivnostey (Simulation of Failures in ICs under Pulsed Neutron Exposure. Part 3. Medium Intensity Area) // Voprosy atomnoy nauki i tekhniki. Seriya: Fizika radiatsionnogo vozdeystviya na radioelektronnuyu apparaturu. 2023. № 1. P. 10–15. (in Russian). EDN: JXHIMD

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Calculated normalized dependences of the absorbed dose rate for the occurrence of failures at different inertias of external circuits (RC). τi is determined from the signal levels of 0.7Umx and 0.25Umx (a) and - 0.5Umx 0.18Umx (b). Symbols are numerical calculations, approximation curves using τi

Download (27KB)
3. Fig. 2. Typical change in the UBR in the DRAM depending on the pulse duration: 1 - power supply sag, 2 - loss of information in the memory cells, 3 - total approximating dependence of the form (1)

Download (21KB)
4. Fig. 3. Changes in the number of failed cells as a function of time after irradiation with an electron pulse:  - test field "0", • - test field "1" [4]

Download (24KB)
5. Fig. 4. Change in the dose resistance level from the duration of the IR pulse

Download (22KB)
6. Fig. 5. Change in the number of fluence failures during pulsed ion irradiation: a – neon; b – xenon

Download (25KB)

Copyright (c) 2025 Russian Academy of Sciences