Activity of energy and carbohydrate metabolism enzymes in Rainbow Trout fingerlings (Oncorhynchus mykiss Walb.) when feeding two types of commercial feed

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

We studied the activity of energy and carbohydrate metabolism enzymes (cytochrome c oxidase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, 1-glycerophosphate dehydrogenase, pyruvate kinase, aldolase) in the muscles and liver of rainbow trout of three size groups aged 5, 10 and 12 months under the influence of two types of commercial feeds with different composition. The levels of activity of the enzymes G6PDH, 1-GPDH and aldolase in the liver were significantly higher in fish from the “Feed №2” group. The identified differences in the activity of enzymes in the liver of fish suggest that feed №2 to a greater extent (compared to feed №1) promotes the use of carbohydrates in lipid biosynthesis. Differences in the activity of the enzymes COX, LDH, aldolase, G6PDH and 1-GPDH in the liver and muscles of fish depending on the month of sampling and belonging to the size group are most likely associated with changes in the metabolism of fish as their weight increases towards generative metabolism.

Авторлар туралы

М. Rodin

Federal Research Center “Karelian Scientific Center of the Russian Academy of Sciences”

Хат алмасуға жауапты Автор.
Email: mikhail.rodin.mr@yandex.ru

Institute of Biology

Ресей, st. Pushkinskaya, 11, Petrozavodsk, 185910

М. Kuznetsova

Federal Research Center “Karelian Scientific Center of the Russian Academy of Sciences”

Email: mikhail.rodin.mr@yandex.ru

Institute of Biology

Ресей, st. Pushkinskaya, 11, Petrozavodsk, 185910

М. Krupnova

Federal Research Center “Karelian Scientific Center of the Russian Academy of Sciences”

Email: mikhail.rodin.mr@yandex.ru

Institute of Biology

Ресей, st. Pushkinskaya, 11, Petrozavodsk, 185910

А. Kuritsyn

Federal Research Center “Karelian Scientific Center of the Russian Academy of Sciences”

Email: mikhail.rodin.mr@yandex.ru

Institute of Biology

Ресей, st. Pushkinskaya, 11, Petrozavodsk, 185910

S. Murzina

Federal Research Center “Karelian Scientific Center of the Russian Academy of Sciences”

Email: mikhail.rodin.mr@yandex.ru

Institute of Biology

Ресей, st. Pushkinskaya, 11, Petrozavodsk, 185910

N. Nemova

Federal Research Center “Karelian Scientific Center of the Russian Academy of Sciences”

Email: mikhail.rodin.mr@yandex.ru

Institute of Biology

Ресей, st. Pushkinskaya, 11, Petrozavodsk, 185910

Әдебиет тізімі

  1. Колб В. Г., Камышников В. С. Клиническая биохимия // Минск: Изд-во Беларусь. 1976. 311 с.
  2. Кочетов Г. А. Практическое руководство по энзимологии // М.: Высш. шк. 1980. 272 с.
  3. Озернюк Н. Д. Энергетический обмен в раннем онтогенезе рыб // М.: Наука. 1985. 175 с.
  4. Чурова М. В., Мещерякова О. В., Веселов А. Е., Немова Н. Н. Активность ферментов энергетического и углеводного обмена и уровень некоторых молекулярно-генетических показателей у молоди лосося (Salmo salar L.), различающейся возрастом и массой // Онтогенез. 2015. T. 46. № 5. P. 304–312. https://doi.org/10.1134/ S1062360415050021
  5. Чурова М. В., Мещерякова О. В., Немова Н. Н., Шатуновский М. И. Соотношение роста и некоторых биохимических показателей рыб на примере микижи Parasalmo mykiss Walb. // Известия РАН. Сер. Биол. 2010. № 3. С. 289–299.
  6. Barroso J. B., Garcia-Salguero L., Peragon J., de la Higuera M., Lupiañez J. A. Effects of long-term starvation on the NADPH production systems in several different tissues of rainbow trout (Oncorhynchus mykiss) // Paris: INRA. 1993. P. 333–338.
  7. Bastrop R., Jurss K., Wacke R. Biochemical parameters as a measure of food availability and growth in immature rainbow trout (Oncorhynchus mykiss) // Comparative Biochemistry and Physiology. 1992. V. 102. P. 151–161. https://doi.org/10.1016/0300-9629(92)90028-O
  8. Boeuf G., Le Bail P. Y. Does light have an influence on fish growth? // Aquaculture. 1999. V. 177. № 1–4. P. 129–152. https://doi.org/10.1016/S0044-8486(99)00074-5
  9. Bradford M. M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. № 1–2. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  10. Bücher T., Pfleiderer G. Pyruvate kinase from muscle // Methods in Enzymology. 1955. V. 1. P. 345–440.
  11. Burness G. P., Leary S. C., Hochachka P. W., Moyes C. D. Allometric scaling of RNA, DNA, and enzyme levels in fish muscle // Am. J. Physiol. 1999. V. 277. P. R1164–R1170. https://doi.org/10.1152/ajpregu.1999.277.4.R1164
  12. Ellerby D. J., Altringham J. D. Spatial variation in fast muscle function of the rainbow trout Oncorhynchus mykiss during fast-starts and sprinting // J. Exp. Biol. 2001. V. 204. P. 2239–2250. https://doi.org/10.1242/jeb.204.13.2239
  13. Enyu Y.-L., Shu-Chien A.C. Proteomics analysis of mitochondrial extract from liver of female zebrafish undergoing starvation and refeeding // Aquacult. Nutr. 2011. V. 17. № 2. P. e413–e423. https://doi.org/10.1111/j.1365-2095.2010.00776.x
  14. Gauthier C., Campbell P., Couture P. Physiological correlates of growth and condition in the yellow perch (Perca flavescens) // Comparative Biochemistry and Physiology. Part A. 2008. V. 151. P. 526–532. https://doi.org/10.1016/j.cbpa.2008.07.010
  15. Harmon J. S., Sheridan M. A. Glucose-stimulated lipolysis in rainbow trout (Oncorhynchus mykiss) liver // J. Fish Physiol. Biochem. 1992. V. 10. P. 189–199. https://doi.org/10.1007/bf00004513
  16. Johansen K. A., Overturf K. Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006. V. 144. P. 119–127. https://doi.org/10.1016/j.cbpb.2006.02.001
  17. Konradt J., Braunbeck T. Alterations of selected metabolic enzymes in fish following longterm exposure to contaminated streams // J. Aquat. Ecosystem Stress Recovery. 2001. V. 8. P. 299–318. https://doi.org/10.1023/a:1012928914322
  18. Kumar V., Sahu N. P., Pal A. K., Kumar S., Sinha A. K., Ranjan J., Baruah K. Modulation of key enzymes of glycolysis, gluconeogenesis, amino acid catabolism, and TCA cycle of the tropical freshwater fish Labeo rohita fed gelatinized and non‐gelatinized starch diet // Fish Physiology and Biochemistry. 2010. V. 36. P. 491–499. https://doi.org/10.1007/s10695-009-9319-5
  19. Llewellyn L., Sweeney G. E., Ramsurn V. P., Rogers S. A., Wigham T. Cloning and unusual expression profile of the aldolase B gene from Atlantic salmon // BBA Gene Structure and Expression. 1998. V. 1443. № 3. P. 375–380. https://doi.org/10.1016/S0167-4781(98)00229-2
  20. Meton I., Mediavilla D., Caseras A., Canto E., Fernandez F., Baanante I. V. Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata) // Br. J. Nutr. 1999. V. 82. P. 223–232. https://doi.org/10.1017/S0007114599001403
  21. Peragon J., Barroso J. B., Garcia‐Salguero L., de la Higuera M., Lupianez J. A. Carbohydrates affect protein‐turnover rates, growth, and nucleic acid content in the white muscle of rainbow trout (Oncorhynchus mykiss) // Aquaculture. 1999. V. 179. P. 425–437. https://doi.org/10.1016/S0044-8486(99)00176-3
  22. Small B. C., Soares J. H.Jr. Effect of dietary carbohydrate on growth, glucose tolerance and liver composition of juveniles striped bass // North American Journal of Aquaculture. 1999. V. 61. P. 286–292. https://doi.org/10.1577/1548-8454(1999)061%3C0286:EODCOG%3E2.0.CO;2
  23. Smith L. Spectrophotometric assay of cytochrome C oxidase // Methods in Biochem. Analysis. 1955. V. 2. P. 427–434. https://doi.org/10.1002/9780470110188.ch13
  24. Soengas J. L., Sanmartin B., Barciela P., Aldegunde M., Rozas G. Changes in carbohydrate metabolism related to the onset of ovarian recrudescence in domesticated rainbow trout (Oncorhynchus mykiss) // Comp. Bioch. and Physiol. Part A: Physiology. 1993. V. 105. P. 293–301. https://doi.org/10.1016/0300-9629(93)90211-L
  25. Somero G. N., Childress J. J. A violation of the metabolism-size scaling paradigm: activities of glycolytic enzymes in muscle increase in larger size fish // Physiol. Zool. 1980. V. 53. № 3. P. 322–337. https://doi.org/10.1086/physzool.53.3.30155794
  26. Talukdar A., Kumar S., Varghese T., Jain K. K., Sahu N. P., Sahoo S. Feeding gelatinized carbohydrate in the diets of magur, Clarias batrachus (Linnaeus, 1758): Effects on growth performance, enzyme activities and expression of muscle regulatory factors // Aquaculture Research. 2019. V. 50. P. 765–777. https://doi.org/10.1111/are.13933
  27. Tian W. N., Braunstein L. D., Pang J., Stuhlmeier K. M., Xi Q. C., Tian X., Stanton R. C. Importance of glucose-6-phosphate dehydrogenase activity for cell growth // J. Biol. Chem. 1998. V. 273. P. 10609–10617. https://doi.org/10.1074/jbc.273.17.10609
  28. Treberg J. R., Lewis J. M., Driedzic W. R. Comparison of liver enzymes in osmerid fishes: key differences between a glycerol accumulating species, rainbow smelt (Osmerus mordax), and a species that does not accumulate glycerol, capelin (Mallotus villosus) // Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002. V. 132. P. 433–438. https://doi.org/10.1016/S1095-6433(02)00083-1
  29. Yengkokpam S., Sahu N. P., Pal A. K., Mukherjee S. C., Debnath D. Gelatinized carbohydrates in the diet of Catla catla fingerlings: effect of levels and sources on nutrient utilization, body composition and tissue enzyme activities // Asian‐Australasian Journal of Animal Sciences. 2007. V. 20. № 1. P. 89–99. https://doi.org/10.5713/ajas.2007.89

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024