Comparison of optical properties and radiation stability of Gd2O3 micro- and nanopowders

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of comparative studies of the phase composition, diffuse reflectance spectra, radiation-induced absorption spectra, and the integral absorption coefficient of solar radiation upon irradiation of micro- and nanopowders of gadolinium oxide are presented. To assess the radiation resistance of optical properties, the samples were placed in a chamber of an installation simulating space conditions, where diffuse reflection spectra were recorded in the range of 0.2–2.5 μm in a vacuum of 2×10–6 Torr before and after each period of electron irradiation (E = 30 keV, Φ = (1 – 3)×1016 cm–2). Micropowders of rare earth elements are used to increase the radiation stability of materials by absorbing free electrons formed in them during irradiation during their transitions from the d- to f-shell. Nanopowders of rare earth elements added to micropowders of various compounds provide an additional mechanism for increasing radiation stability due to the annihilation of primary defects formed during irradiation on nanoparticles. The work obtained a result opposite to these mechanisms - the radiation stability of micropowder is significantly (more than 4 times) higher compared to nanopowder, due to more intense absorption in the ultraviolet region for nanopowder, caused by its own defects. The paper gives an explanation of the results obtained.

Texto integral

Acesso é fechado

Sobre autores

M. Mikhailov

Tomsk State University of Control Systems & Radioelectronics

Autor responsável pela correspondência
Email: membrana2010@mail.ru
Rússia, 634000, Tomsk

V. Goronchko

Tomsk State University of Control Systems & Radioelectronics

Email: W_Goronchko@mail.ru
Rússia, 634000, Tomsk

D. Fedosov

Tomsk State University of Control Systems & Radioelectronics

Email: Membrana2010@mail.ru
Rússia, 634000, Tomsk

A. Lapin

Tomsk State University of Control Systems & Radioelectronics

Email: Membrana2010@mail.ru
Rússia, 634000, Tomsk

S. Yuryev

Tomsk State University of Control Systems & Radioelectronics

Email: Membrana2010@mail.ru
Rússia, 634000, Tomsk

Bibliografia

  1. Vani P., Vinitha G., Sayyed M.I., Alshammari M.M., Manikandan N. // Nucl. Engineer. Technol. 2021. V. 53. Iss. 12. P. 4106. https://doi.org/10.1016/j.net.2021.06.009
  2. Marzouk M.A., Ghoneim N.A. // Radiation Phys. Chem. 2020. V. 174. P. 108893. https://doi.org/10.1016/j.radphyschem.2020.108893
  3. Chen J., Yu Y., Feng A., Mi L., Xiu H. // Ceram. Int. 2022. V. 48. Iss. 1. P. 754. https://doi.org/10.1016/j.ceramint.2021.09.155
  4. Kleiman J.I., Gudimenko Y., Iskanderova Z., Tennyson R.C., Morison W.D. Modification of Thermal Control Paints by PHOTOSIL™ Technology. // Protection of Space Materials from the Space Environment. Space Technology Proceedings, vol 4. / Eds. Kleiman J.I., Tennyson R.C. Dordrecht: Springer, 2001. P. 243. https://doi.org/10.1007/978-94-010-0714-6_19
  5. Mikhailov M.M., Vlasov V.A., Yuryev S.A., Neshchimenko V.V., Shcherbina V.V. // Dyes and Pigments. 2015. V. 123. P. 72. https://doi.org/10.1016/j.dyepig. 2015.07.024
  6. Bo Z., Gang L., Kangli C., Weimin C. Preparation and Space Environmental Stability of a Nano-Materials Modified Thermal Control Coating. // Protection of Space Materials from the Space Environment. Space Technology Proceedings, vol 47. / Ed. Kleiman J.I. Cham: Springer, 2017. P. 433. https://doi.org/10.1007/978-3-319-19309-0_43
  7. Михайлов М.М., Нещименко В.В., Скрипка Н.Г., Хохлов Р.Н. // Перспективные материалы. 2010. № 3. C.14.
  8. Dudin A.N., Iurina V.Yu., Neshchimenko V.V., Li C.L. // St. Petersburg Polytechnic University Journal – Phys. Math. 2022. V. 15. Iss. 3.1. P. 259. https://doi.org/10.18721/JPM.153.117
  9. Andrievskii R. // Rev. Adv. Mater. Sci. 2011. V. 29.
  10. Kositsyn L.G., Mikhailov M.M., Kuznetsov N.Y., Dvoretskii M.I. // Instrum. Experimental Tech. 1985. V. 28. P. 929.
  11. Artini C., Costa G.A., Pani M., Lausi A. // J. Solid State Chem. 2012. V. 190. P. 24. https://doi.org/10.1016/j.jssc.2012.01.056
  12. ASTM E490-00a. Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, ASTM International, West Conshohocken, PA, 2019.
  13. Mikhailov M.M., Dvoretskii M.I. // Soviet Phys. J. 1988. V. 31. P. 591. https://doi.org/10.1007/BF00917556
  14. Kuznetsov V.N., Serpone N. // J. Phys. Chem. 2009. V. 113. № 34. P. 15110. https://doi.org/10.1021/jp901034t
  15. Blanco M., Coello J., Iturriaga H., Maspoch S., Pezue-la C. // Analyst 1998. V. 123. Iss. 8. P. 135. https://doi.org/10.1039/A802531B
  16. Blanco M., Villarroya I. // Trends in Analytical Chemistry. 2002. V. 21. Iss. 4. P. 240. https://doi.org/10.1016/S0165-9936(02)00404-1
  17. Trofimova E., Pustovarov V., Zatsepin A. // Physics of the Solid State. 2019. V. 61. P. 763. https://doi.org/10.1134/S1063783419050366
  18. ASTM E903 – 96. Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres, ASTM International, West Conshohocken, PA, 2012.
  19. Johnson F.S. // J. Meteorological. 1954. V. 11. № 5. P. 431. https://doi.org/10.1175/1520-0469(1954)011<0431: TSC>2.0.CO;2
  20. Новиков Л.С. // Радиационные воздействия на материалы космических аппаратов. М.: Унив. книга, 2010. С. 191.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Radiographs of powders: gd2o3 before (a) and after (b) electron irradiation, nGd2O3 before (c) and after (d) electron irradiation.

Baixar (274KB)
3. Fig. 2. Diffuse reflection spectra of gd2o3 microdowder (1), nGd2O3 nanopowder (2) and solar radiation spectrum (3).

Baixar (135KB)
4. Fig. 3. Granulometric composition of gd2o3 powder.

Baixar (75KB)
5. Fig. 4. The edge of the main absorption of micro- and nanopowders Gd2O3.

Baixar (154KB)
6. Fig. 5. Diffuse reflection spectra before (1) and after irradiation with electrons with an energy of 30 keV by fluence 1 (2), 2 (3), 3 × 1016 (4) cm–2 micro- (a) and nanopowders (b) Gd2O3.

Baixar (257KB)
7. Fig. 6. Difference reflection spectra of micro-powder (a) and nanopowder (b) Gd2O3 after electron irradiation with fluence 1 (1), 2 (2), 3 × 1016 (3) See–2.

Baixar (244KB)
8. Fig. 7. Dependence of the change in the absorption coefficient ∆as on the electron fluence for mGd2O3 (1) and Gd2O3 (2).

Baixar (95KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024