Synthesis of novel composite sorbents based on titanium, calcium and magnesium phosphates

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Heterogonous and mechanochemical synthesis of new materials based on titanium, calcium and magnesium phosphates have been developed for the first time. Final products demonstrate high sorption efficiency towards heavy metal cations and radionuclides. The combined action of the components ensures high sorption capacity towards different cations within a wide pH range. The optimal conditions of the processes providing the obtaining of composite products with given phase composition have been established. Using solid precursors and phosphorus-containing agents taken in a stoichiometric ratio, and mild hydrothermal conditions make it possible to reduce liquid waste to a minimum level. During the first step of synthesis both precipitation of titanium phosphate and formation of ammonium phosphate which is the precursor for the second step occur. The latter is the formation of calcium and magnesium phosphates. Thus, the synthesis proceeds in accordance with the principles of green chemistry.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Mudruk

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of the Russian Academy of Sciences (ICT KSC RAS)

Хат алмасуға жауапты Автор.
Email: n.mudruk@ksc.ru
Ресей, 184209 Apatity

M. Maslova

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of the Russian Academy of Sciences (ICT KSC RAS)

Email: n.mudruk@ksc.ru
Ресей, 184209 Apatity

A. Nikolaev

Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences” Science Centre of the Russian Academy of Sciences (ICT KSC RAS)

Email: n.mudruk@ksc.ru

Corresponding Member of the RAS

Ресей, 184209 Apatity

Әдебиет тізімі

  1. Robinson J.L., Brudnicki P., Lu H.H. // Comprehensive Biomaterials II. 2017. V. 1. P. 460–477. https://doi .org/10.1016/B978-0-12-803581-8.09345-0
  2. Yang J., Li Q., Li J., Yang J., Zhang R., Niinomi M., Nakano T. // J. Mater. Eng. Perform. 2023. V. 32. P. 6151–6159. https://doi .org/10.1007/s11665-022-07541-6
  3. Kumar K., Das A., Prasad S.B. // Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 2023. V. 237 № 4. P. 502–516. https://doi .org/10.1177/09544119231158837
  4. Barinov S.M. // Russ. Chem. Rev. 2010. V. 79. № 1. P. 13–29. https://doi .org/10.1070/RC2010v079n01ABEH004098
  5. Li P., Hu Y., Lu D., Wu J., Lv Y. // Micromachines. 2023. V. 14. № 3. P. 639. https://doi .org/10.3390/mi14030639
  6. Yadav A.A., Hunge Y.M., Dhodamani A.G., Kang S.-W. // Catalysts. 2023. V. 13. № 4. P. 716. https://doi .org/10.3390/catal13040716
  7. Barpanda P., Chotard J.-N., Delacourt Ch., Reynard M., Filinchuk Ya., Armand M., Deschamps M., Tarascon J.-M. // Angew. Chemie Int. Ed. 2011. V. 50. № 11. P. 2526–2531. https://doi .org/10.1002/anie.201006331
  8. Kadoshnikov V.M., Melnychenko T.I., Arkhipenko O.M., Tutskyi D.H., Komarov V.O., Bulavin L.A., Zabulonov Y.L. // C-J. Carbon Res. 2023. V. 9. № 2. P. 39. https://doi.org/10.3390/c9020039
  9. Ryfa A., Żmuda R., Mandrela S., Białecki R., Adamczyk W., Nowak M., Lelek Ł., Bandoła D., Pichura M., Płonka J., Wdowin M. // Fuel. 2023. V. 333. 126470. https://doi.org/10.1016/j.fuel.2022.126470
  10. Tokarčíková M., Seidlerová J., Motyka O., Šafaříková M. // Ecol. Chem. Eng. S. 2019. V. 26. № 4. P. 743–757. https://doi .org/10.1515/eces-2019-0052
  11. Alhendal A., Almoaeen R.A., Rashad M., Husain A., Mouffouk F., Ahmad Z. // RSC Adv. 2022. V. 12. № 28. P. 18077–18083. https://doi .org/10.1039/D2RA02659G
  12. Ma M., Wang L., Lu X., Wang Sh., Guo Y., Liang X. // J. Chromatogr. A. 2023. V. 1691. 463814. https://doi .org/10.1016/j.chroma.2023.463814
  13. Maslova M., Mudruk N., Ivanets A., Shashkova I., Kitikova N. // Environ. Sci. Pollut. Res. 2020. V. 27 № 4. P. 3933–3949. https://doi .org/10.1007/s11356-019-06949-3
  14. McMaster S.A., Ram R., Faris N., Pownceby M.I. // J. Hazard. Mater. 2018. V. 360. P. 257–269. https://doi .org/10.1016/j.jhazmat.2018.08.037
  15. Vinokurov S.E., Kulikova S.A., Myasoedov B.F. // Materials. 2018. V. 11. № 6. P. 976. https://doi .org/10.3390/ma11060976
  16. Maslova M.V., Rusanova-Naydenova D., Naydenov V., Antzutkin O.N., Gerasimova L.G. // J. Non. Cryst. Solids. 2012. V. 358. P. 2943–2950. https://doi .org/10.1016/j.jnoncrysol.2012.06.033
  17. Mahaulpatha W.M.B.H., Jayaweera P.M., Palliyaguru L. // Proc. Int. For. Environ. Symp. 2022. V. 26. 139. https://doi .org/10.31357/fesympo.v26.5757
  18. Bortun A., Jaimez E., Llavona R., Garcia J.R., Rodriguez J. // Mater. Res. Bull. 1995. V. 30 № 4. P. 413–420. https://doi .org/10.1016/0025-5408(95)00019-4
  19. Barbé C.J., Mitchell D.R.G., Drabarek E., Bartlett J.R., Woolfrey J.L., Luca V. // MRS Proc. 2000. V. 628. P. 73. https://doi .org/10.1557/PROC-628-CC7.3
  20. Trublet M., Maslova M.V., Rusanova D., Antzutkin O.N. // RSC Adv. 2017. V. 7. № 4. P. 1989–2001. https://doi.org/10.1039/C6RA25410A
  21. Maslova M.V., Ivanenko V.I., Yanicheva N.Y., Mudruk N.V. // Int. J. Mol. Sci. 2020. V. 21. № 2. P. 447. https://doi .org/10.3390/ijms21020447
  22. Maslova M.V., Ivanenko V.I., Gerasimova L.G., Ryzhuk N.L. // Russ. J. Inorg. Chem. 2018. V. 63. № 9. P.1141–1148. https://doi .org/10.1134/S0036023618090115
  23. Maslova M., Ivanenko V., Yanicheva N., Gerasimova L. // J. Water Process Eng. 2020. V. 35. 101233. https://doi .org/10.1016/j.jwpe.2020.101233
  24. Maslova M.V., Ivanenko V.I., Gerasimova L.G., Nikolaev A.I. // Dokl. Chem. 2021. V. 499. № 2. P. 163–167. https://doi .org/10.1134/S0012500821080024
  25. Ivanets A.I., Kitikova N.V., Shashkova I.L., Oleksiienko O.V., Levchuk I., Sillanpää M. // J. Water Process Eng. 2016. V. 9. P. 246–253. https://doi .org/10.1016/j.jwpe.2016.01.005
  26. Chen Y.N., Liu C., Guo L., Nie J.X., Li C. // Clean Technol. Environ. Policy. 2018. V. 20. № 10. P. 2375–2380. https://doi .org/10.1007/s10098-018-1607-2
  27. Ayers R., Hannigan N., Vollmer N., Unuvar C. // Int. J. Self-Propag. High-Temp. Synth. 2011. V. 20. P. 6–14. https://doi .org/10.3103/S1061386211010031
  28. Gerasimova L.G., Maslova M.V., Shchukina E.S. // Theor. Found. Chem. Eng. 2009. V. 43. № 4. P. 464–467. https://doi .org/10.1134/s0040579509040186
  29. Maslova M., Ivanenko V., Gerasimova L., Larsson A.-C., Antzutkin O.N. // J. Mater. Sci. 2021. V. 56. № 16. P. 9929–9950. https://doi .org/10.1007/s10853-021-05876-4
  30. Маслова М.В., Мудрук Н.В., Герасимова Л.Г., Иванец А.И. Способ получения сорбента на основе доломита. Патент РФ 2711635. 2020.
  31. Mudruk N., Maslova M. // Int. J. Mol. Sci. 2023. V. 24. № 9. P. 7903. https://doi .org/10.3390/ijms24097903
  32. Маслова М.В., Мудрук Н.В., Герасимова Л.Г., Кузьмич Ю.В. Способ получения сорбента на основе доломита. Патент РФ 2743359. 2021.
  33. Maslova M., Mudruk N., Ivanets A., Shashkova I., Kitikova N. // J. Water Process Eng. 2020. V. 40. P. 101830.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffractograms of samples of titanium phosphates TR: dried at 60 °C (1), calcined at 850 °C (2).

Жүктеу (181KB)
3. Fig. 2. Diffractograms of samples of Ca–Mg CMR phosphates dried at 60 °C: after treatment with a 10% solution H3PO4 (1), after treatment with 1M NH4H2PO4 (2) solution.

Жүктеу (166KB)
4. Fig. 3. Diffractograms of Ti composite phosphate– Ca–Mg TSMR: dried at 60 °C (1), calcined at 850 °C (2).

Жүктеу (224KB)
5. Fig. 4. Diffractogram of a composite phosphate product obtained as a result of mechanochemical synthesis.

Жүктеу (249KB)
6. Fig. 5. The sorption efficiency of Cs+, Sr2+ and Co2+ on the obtained samples of Ti (1) phosphate, Ca–Mg (2) phosphate, Ti-Ca–Mg (3) composite phosphate at pH 2 (a) and pH 7 (b).

Жүктеу (261KB)
7. Fig. 6. Sorption capacities of the obtained samples of Ti phosphate (1), Ca–Mg phosphate (2), Ti–Ca–Mg composite phosphate (3).

Жүктеу (181KB)

© Russian Academy of Sciences, 2024