Structure of thin titanium nitride films deposited by magnetron sputtering

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review paper is focused on the structure of thin titanium nitride films formed by magnetron sputtering. A model of film growth depending on the deposition temperature and nitrogen flow is considered. This model is compared with experimental results. The effect of annealing on the structure of titanium nitride films is described.

Full Text

Restricted Access

About the authors

A. G. Isaev

NRC “Kurchatov Institute”

Author for correspondence.
Email: isaev.ag@phystech.edu
Russian Federation, Moscow

A. E. Rogozhin

NRC “Kurchatov Institute”

Email: isaev.ag@phystech.edu
Russian Federation, Moscow

References

  1. Sharath S.U., Vogel S., Molina-Luna L. Control of Switching Modes and Conductance Quantization in Oxygen Engineered HfOx based Memristive Devices // Adv. Funct. Mater. 2017. Vol. 27/ № 32. P. 1700432. https://doi.org/10.1002/adfm.201700432
  2. Isaev A.G., Permyakova O.О., Rogozhin A.Е. Mechanisms of conductive filament formation in hafnium oxide multilayer structures // Thin Solid Films. 2023. Vol. 781. P. 139993. https://doi.org/10.1016/j.tsf.2023.139993
  3. Isaev A.G., Permyakova O.O., Rogozhin A.E. Oxide Memristors for ReRAM: Approaches, Characteristics, and Structures // Russ. Microelectron. 2023. Vol. 52. № 2. P. 74–98. https://doi.org/10.1134/S1063739723700257
  4. Kohlhase A., Mändl M., Pamler W. Performance and failure mechanisms of TiN diffusion barrier layers in submicron devices // J. Appl. Phys. 1989. Vol. 65. № 6. P. 2464–2469. https://doi.org/10.1063/1.342816
  5. Kwak M.Y., Shin D.H., Kang T.W., Kim K.N. Characteristics of TiN barrier layer against Cu diffusion // Thin Solid Films. 1999. Vol. 339. № 1–2. P. 290–293. https://doi.org/10.1016/S0040-6090(98)01074-8
  6. Vorobjova A.I., Labunov V.A., Outkina E.A., Grapov D.V. Metallization of Vias in Silicon Wafers to Produce Three-Dimensional Microstructures // Russ. Microelectron. 2021. Vol. 50. № 1. P. 8–18. https://doi.org/10.1134/S1063739721010108
  7. Huang J.S., Oates A.S., Zhao J. Effect of cracks in TiN anti-reflection coating layers on early via electromigration failure // Thin Solid Films. 2000. Vol. 371. № 1–2. P. 310–315. https://doi.org/10.1016/S0040-6090(00)01018-X
  8. Pan F., Gao S., Chen C. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance // Mater. Sci. Eng. R Rep. 2014. Vol. 83. P. 1–59. https://doi.org/10.1016/j.mser.2014.06.002
  9. Lanza M., Wong H.-S.P., Pop E. Recommended Methods to Study Resistive Switching Devices // Adv. Electron. Mater. 2019. Vol. 5. № 1. P. 1800143. https://doi.org/10.1002/aelm.201800143
  10. Kajikawa Y., Noda S., Komiyama H. Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides // J. Vac. Sci. Technol. Vac. Surf. Films. 2003. Vol. 21. № 6. P. 1943–1954. https://doi.org/10.1116/1.1619414
  11. Patsalas P., Kalfagiannis N., Kassavetis S., Abadias G., Bellas D.V., Lekka Ch., Lidorikis E. Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics // Mater. Sci. Eng. R Rep. 2018. Vol. 123. P. 1–55. https://doi.org/10.1016/j.mser.2017.11.001
  12. Petrov I., Barna P.B., Hultman L., Greene J.E. Microstructural evolution during film growth // J. Vac. Sci. Technol. Vac. Surf. Films. 2003. Vol. 21, № 5. P. S117–S128. https://doi.org/10.1116/1.1601610
  13. Mahieu S., Depla D., Gryse R.D. Modelling the growth of transition metal nitrides // J. Phys. Conf. Ser. 2008. Vol. 100. № 8. P. 082003. https://doi.org/10.1088/1742-6596/100/8/082003
  14. Mahieu S., Depla D. Reactive sputter deposition of TiN layers: modelling the growth by characterization of particle fluxes towards the substrate // J. Phys. Appl. Phys. 2009. Vol. 42. № 5. P. 053002. https://doi.org/10.1088/0022-3727/42/5/053002
  15. Mahieu S., Ghekiere P., Depla D., De Gryse R. Biaxial alignment in sputter deposited thin films // Thin Solid Films. 2006. Vol. 515. № 4. P. 1229–1249. https://doi.org/10.1016/j.tsf.2006.06.027
  16. Matacotta F.C., Ottaviani G. Science and technology of thin films. Singapore New Jersey London [etc.]: World scientific, 1995.
  17. Thornton J.A. High Rate Thick Film Growth // Annu. Rev. Mater. Sci. 1977. Vol. 7. № 1. P. 239–260. https://doi.org/10.1146/annurev.ms.07.080177.001323
  18. Li T.Q., Noda S., Tsuji Y., Ohsawa T., Komiyama H. Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111) // J. Vac. Sci. Technol. Vac. Surf. Films. 2002. Vol. 20. № 3. P. 583–588. https://doi.org/10.1116/1.1458944
  19. Martinez G., Shutthanandan V., Thevuthasan S., Chessa J.F., Ramana C.V. Effect of thickness on the structure, composition and properties of titanium nitride nano-coatings // Ceram. Int. 2014. Vol. 40. № 4. P. 5757–5764. https://doi.org/10.1016/j.ceramint.2013.11.014
  20. Yang H.H., Je J.H., Lee K.-B. Effect of the nitrogen partial pressure on the preferred orientation of TiN thin films // J. Mater. Sci. Lett. 1995. Vol. 14. № 23. P. 1635–1637. https://doi.org/10.1007/BF00422660
  21. Je J.H., Noh D.Y., Kim H.K., Liang K.S. The crossover of preferred orientation in TiN film growth: A real time x-ray scattering study // J. Mater. Res. 1997. Vol. 12. № 1. P. 9–12. https://doi.org/10.1557/JMR.1997.0003
  22. Zhou T., Liu D., Zhang Y., Ouyang T., Suo J. Microstructure and hydrogen impermeability of titanium nitride thin films deposited by direct current reactive magnetron sputtering // J. Alloys Compd. 2016. Vol. 688. P. 44–50. https://doi.org/10.1016/j.jallcom.2016.06.278
  23. Chuang K.-L., Tsai M.-T., Lu F.-H. Morphology control of conductive TiN films produced by air-based magnetron sputtering // Surf. Coat. Technol. 2018. Vol. 350. P. 1091–1097. https://doi.org/10.1016/j.surfcoat.2018.02.020
  24. Huang J.-H., Yu K.-J., Sit P., Yu G.-P. Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering // Surf. Coat. Technol. 2006. Vol. 200. № 14–15. P. 4291–4299. https://doi.org/10.1016/j.surfcoat.2005.02.147
  25. Xi Y., Fan H., Liu W. The effect of annealing treatment on microstructure and properties of TiN films prepared by unbalanced magnetron sputtering // J. Alloys Compd. 2010. Vol. 496. № 1–2. P. 695–698. https://doi.org/10.1016/j.jallcom.2010.02.176
  26. Kavitha A., Kannan R., Sreedhara Reddy P., Rajashabala S. The effect of annealing on the structural, optical and electrical properties of Titanium Nitride (TiN) thin films prepared by DC magnetron sputtering with supported discharge // J. Mater. Sci. Mater. Electron. 2016. Vol. 27. № 10. P. 10427–10434. https://doi.org/10.1007/s10854-016-5130-0
  27. Ghailane A. et al. Influence of Annealing Temperature on the Microstructure and Hardness of TiN Coatings Deposited by High-Power Impulse Magnetron Sputtering // J. Mater. Eng. Perform. 2022. Vol. 31. № 7. P. 5593–5601. https://doi.org/10.1007/s11665-022-06689-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of film structure changes with substrate temperature (Ts) relative to the melting temperature of the deposited material (Tm) or gas particle flux (Jgas) relative to the target particle flux (Jtar) according to the RSZ model [12]

Download (18KB)
3. Fig. 2. Schematic representation of the structure of films obtained under the conditions of zones Ia and Ib

Download (22KB)
4. Fig. 3. Schematic representation of the growth process and the final structure of films obtained under the conditions of zone Ic [15]

Download (14KB)
5. Fig. 4. Schematic representation of the growth process and the final structure of films obtained under the conditions of zone T [15]

Download (15KB)
6. Fig. 5. Schematic representation of the structure of films obtained under the conditions of zone II [15]

Download (5KB)
7. Fig. 6. Film orientation and SEM images of the film surface at different nitrogen flows during sputtering [15]

Download (32KB)
8. Fig. 7. Model of TiN film structure changes during growth: (a–d) schematic representation of TiN film structure changes during growth; (e–g) TEM images; (h, i) XRD spectra confirming the model [18]

Download (80KB)
9. Fig. 8. Effect of nitrogen flow on the structure of TiN film on tantalum substrate: (a–c) SEM images of film surfaces obtained at different nitrogen flows; dependence of average grain size (g) and film orientation (e) on the nitrogen flow value [22]

Download (64KB)
10. Fig. 9. Structure of TiN films using N2 /O2 mixture as a reactive gas: (a) SEM images of films obtained at different reactive gas flows; effect of reactive gas flow on XRD spectra (b) and film orientation (c) [23]

Download (43KB)
11. Fig. 10. Effect of annealing in Ar/H2 atmosphere on the structure of TiN films: SEM images of unannealed (a) and annealed at 700 °C (b) film; XRD spectra of films with different annealing temperatures (c); Orientation (g) and roughness (d) of the film surface depending on the annealing temperature and thickness [24]

Download (40KB)
12. Fig. 11. SEM images of the TiN film surface after annealing at different temperatures: a) unannealed film; b) 300 °C; c) 450 °C; d) 700 °C; d) 900 °C [25]

Download (60KB)
13. Fig. 12. Effect of low-temperature anneals on the structure of TiN films: AFM images of the surface of unannealed film (a) and films annealed at 100 °C (b), 200 °C (c), 300 °C (d); XRD spectra and film roughness (d) at different annealing temperatures [26]

Download (55KB)
14. Fig. 13. Effect of annealing temperature of HiPIMS films on orientation (a), average grain size (b) and roughness (c) of the film [27]

Download (21KB)

Copyright (c) 2025 Russian Academy of Sciences